题目内容
19.已知($\sqrt{2}$+1)21=a+b$\sqrt{2}$,其中a和b为正整数,则b与27的最大公约数是1.分析 ($\sqrt{2}$+1)21的展开式的通项公式为:Tr+1=${∁}_{21}^{r}$$(\sqrt{2})^{r}$,(r∈N,0≤r≤21).当r为奇数时,b$\sqrt{2}$=${∁}_{21}^{1}×\sqrt{2}$+${∁}_{21}^{3}(\sqrt{2})^{3}$+…${∁}_{21}^{21}(\sqrt{2})^{21}$=$\sqrt{2}$$({∁}_{21}^{1}+2{∁}_{21}^{3}+…+{2}^{10}{∁}_{21}^{21})$,可得b=${∁}_{21}^{1}$+2${∁}_{21}^{3}$+…+${2}^{10}{∁}_{21}^{21}$=1025×21+514×${∁}_{21}^{3}$+264${∁}_{21}^{5}$+144${∁}_{21}^{7}$+96×${∁}_{21}^{11}$,即可得出.
解答 解:∵($\sqrt{2}$+1)21的展开式的通项公式为:Tr+1=${∁}_{21}^{r}$$(\sqrt{2})^{r}$,(r∈N,0≤r≤21).
当r为奇数时,b$\sqrt{2}$=${∁}_{21}^{1}×\sqrt{2}$+${∁}_{21}^{3}(\sqrt{2})^{3}$+…${∁}_{21}^{21}(\sqrt{2})^{21}$=$\sqrt{2}$$({∁}_{21}^{1}+2{∁}_{21}^{3}+…+{2}^{10}{∁}_{21}^{21})$,
∴b=${∁}_{21}^{1}$+2${∁}_{21}^{3}$+…+${2}^{10}{∁}_{21}^{21}$=1025×21+514×${∁}_{21}^{3}$+264${∁}_{21}^{5}$+144${∁}_{21}^{7}$+96×${∁}_{21}^{11}$与3互质,
∴b与27的最大公约数是1.
故答案为:1.
点评 本题考查了二项式定理的应用、互质的性质,考查了推理能力与计算能力,属于中档题.
| A. | (0,1) | B. | (-1,0) | C. | (-∞,0) | D. | (-∞,0)∪(1,+∞) |