题目内容
7.甲、乙两人进行射击训练,每人射击两次,若甲、乙两人一次射击命中目标的概率分别为$\frac{1}{3}$和$\frac{1}{2}$,且每次射击是否命中相互之间没有影响.(1)求两人恰好各命中一次的概率;
(2)求两人击中目标的总次数大于2的概率.
分析 (1)根据相互独立事件的概率乘法公式和加法公式计算即可,
(2)根据古典概率公式计算即可.
解答 解:(1)设A表示甲命中目标,B表示乙命中目标,则A、B相互独立,
且P(A)=$\frac{1}{3}$,P(B)=$\frac{1}{2}$,
两人恰好各命中一次的概率P=P(A)P(B)+P($\overline{A}$)P(B)+P(A)P($\overline{B}$)=$\frac{1}{3}×\frac{1}{2}$+$\frac{2}{3}×\frac{1}{2}$+$\frac{1}{3}×\frac{1}{2}$=$\frac{2}{3}$,
(2)两人击中目标的总次数大于2,则为甲击中2次,乙击中1次,或甲击中1次,乙击中2次,甲击中2次,乙击中2次,
每人射击两次的基本事件有,设1表示中,0表示不中,基本事件有0000,1000,0100,0010,0001,1100,1010,1001,0011,1110,1101,1011,0111,1111,共14种,其中两人击中目标的总次数大于2的有5种,
故两人击中目标的总次数大于2的概率为$\frac{5}{14}$.
点评 本小题主要考查相互独立事件概率的计算以及古典概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.
练习册系列答案
相关题目
18.
噪声污染已经成为影响人们身体健康和生活质m的严重问题,为了了解强度D(单位:分贝)与声音能量I(单位:W/cm2)之间的关系,将测量得到的声音强度Di和声音能量Ii(i=1.2.…,10)数据作了初步处理,得到下面的散点图及一些统计量的值.
表中Wi=lgIi,$\overline{W}$=$\frac{1}{10}$$\sum_{i=1}^{10}$Wi
(Ⅰ)根据表中数据,求声音强度D关于声音能量I的回归方程D=a+blgI;
(Ⅱ)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P共受到两个
声源的影响,这两个声源的声音能量分别是I1和I2,且$\frac{1}{I_1}+\frac{1}{I_2}={10^{10}}$.已知点P的声音
能量等于声音能量Il与I2之和.请根据(I)中的回归方程,判断P点是否受到噪声污染的干
扰,并说明理由.
附:对于一组数据(μl,ν1),(μ2,ν2),…(μn,νn),其回归直线ν=α+βμ的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({u}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-β$\overline{u}$.
| $\overline{I}$ | $\overline{D}$ | $\overline{W}$ | $\sum_{i=1}^{10}$(Ii-$\overline{I}$)2 | $\sum_{i=1}^{10}$(Wi-$\overline{W}$)2 | $\sum_{i=1}^{10}$(Ii-$\overline{I}$)(Di-$\overline{D}$) | $\sum_{i=1}^{10}$(Wi-$\overline{W}$)(Di-$\overline{D}$) |
| 1.04×10-11 | 45.7 | -11.5 | 1.56×10-21 | 0.51 | 6.88×10-11 | 5.1 |
(Ⅰ)根据表中数据,求声音强度D关于声音能量I的回归方程D=a+blgI;
(Ⅱ)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P共受到两个
声源的影响,这两个声源的声音能量分别是I1和I2,且$\frac{1}{I_1}+\frac{1}{I_2}={10^{10}}$.已知点P的声音
能量等于声音能量Il与I2之和.请根据(I)中的回归方程,判断P点是否受到噪声污染的干
扰,并说明理由.
附:对于一组数据(μl,ν1),(μ2,ν2),…(μn,νn),其回归直线ν=α+βμ的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({u}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-β$\overline{u}$.
2.已知F是抛物线x2=4y的焦点,P为抛物线上的动点,且A的坐标为(0,-1),则$\frac{|PF|}{|PA|}$的最小值是( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
12.已知平面向量$\overrightarrow a=({3,6}),\overrightarrow b=({x,-1})$,如果$\overrightarrow a∥\overrightarrow b$,那么$|\overrightarrow b|$=( )
| A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | 3 | D. | $\frac{3}{2}$ |