ÌâÄ¿ÄÚÈÝ
ÏÂÁÐÃüÌ⣺
¢Ùº¯Êýy=2cos£¨2x+
£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ£¨
£¬0£©£»
¢Úº¯Êýy=sin£¨
x-
£©ÔÚÇø¼ä[-
£¬
¦Ð]ÉϵÄÖµÓòΪ[-
£¬
]£»
¢Ûº¯Êýy=cosxµÄͼÏó¿ÉÓɺ¯Êýy=sin£¨x+
£©µÄͼÏóÏòÓÒÆ½ÒÆ
¸öµ¥Î»µÃµ½£»
¢ÜÈô·½³Ìsin£¨2x+
£©-a=0ÔÚÇø¼ä[0£¬
]ÉÏÓÐÁ½¸ö²»Í¬µÄʵÊý½âx1£¬x2£¬Ôòx1+x2=
£®ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ £®
¢Ùº¯Êýy=2cos£¨2x+
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
¢Úº¯Êýy=sin£¨
| 1 |
| 2 |
| ¦Ð |
| 6 |
| ¦Ð |
| 3 |
| 11 |
| 6 |
| ||
| 2 |
| ||
| 2 |
¢Ûº¯Êýy=cosxµÄͼÏó¿ÉÓɺ¯Êýy=sin£¨x+
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
¢ÜÈô·½³Ìsin£¨2x+
| ¦Ð |
| 3 |
| ¦Ð |
| 2 |
| ¦Ð |
| 6 |
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ,¼òÒ×Âß¼
·ÖÎö£ºÇóx=
ʱµÄº¯ÊýÖµÅжϢ٣»Ö±½ÓÇó½âº¯Êýy=sin£¨
x-
£©ÔÚÇø¼ä[-
£¬
¦Ð]ÉϵÄÖµÓòÅжϢڣ»
»¯y=cosx=sin£¨x+
£©=sin£¨x+
+
£©ÅжϢۣ»Çó³öº¯Êýy=sin£¨2x+
£©ÔÚ[0£¬
]ÉϵĶԳÆÖá·½³Ì£¬½áºÏÁãµãºÍ·½³Ì¸ùµÄ¹ØÏµÅжϢܣ®
| ¦Ð |
| 6 |
| 1 |
| 2 |
| ¦Ð |
| 6 |
| ¦Ð |
| 3 |
| 11 |
| 6 |
»¯y=cosx=sin£¨x+
| ¦Ð |
| 2 |
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
| ¦Ð |
| 3 |
| ¦Ð |
| 2 |
½â´ð£º
½â£º¶ÔÓÚ¢Ù£¬
¡ßµ±x=
ʱ£¬º¯Êýy=2cos£¨2x+
£©µÄֵΪ0£¬
¡àº¯Êýy=2cos£¨2x+
£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪ£¨
£¬0£©£¬ÃüÌâ¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬
ÓÉx¡Ê[-
£¬
¦Ð]£¬µÃ
x-
¡Ê[-
£¬
]£¬
¡ày=sin£¨
x-
£©¡Ê[-
£¬1]£¬ÃüÌâ¢Ú´íÎó£»
¶ÔÓÚ¢Û£¬y=cosx=sin£¨x+
£©=sin£¨x+
+
£©£¬
¡àº¯Êýy=cosxµÄͼÏó¿ÉÓɺ¯Êýy=sin£¨x+
£©µÄͼÏóÏò×óÆ½ÒÆ
¸öµ¥Î»µÃµ½£¬ÃüÌâ¢Û´íÎó£»
¶ÔÓڢܣ¬·½³Ìsin£¨2x+
£©-a=0¿É»¯Îª·½³Ìsin£¨2x+
£©=a£¬
º¯Êýy=sin£¨2x+
£©ÔÚ[0£¬
]ÉϵĶԳÆÖá·½³ÌÊÇx=
£¬
¡àÈô·½³Ìsin£¨2x+
£©-a=0ÔÚÇø¼ä[0£¬
]ÉÏÓÐÁ½¸ö²»Í¬µÄʵÊý½âx1£¬x2£¬Ôòx1+x2=
£¬ÃüÌâ¢ÜÕýÈ·£®
¡àÕýÈ·ÃüÌâµÄÐòºÅÊǢ٢ܣ®
¹Ê´ð°¸Îª£º¢Ù¢Ü£®
¡ßµ±x=
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
¡àº¯Êýy=2cos£¨2x+
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
¶ÔÓÚ¢Ú£¬
ÓÉx¡Ê[-
| ¦Ð |
| 3 |
| 11 |
| 6 |
| 1 |
| 2 |
| ¦Ð |
| 6 |
| ¦Ð |
| 3 |
| 3¦Ð |
| 4 |
¡ày=sin£¨
| 1 |
| 2 |
| ¦Ð |
| 6 |
| ||
| 2 |
¶ÔÓÚ¢Û£¬y=cosx=sin£¨x+
| ¦Ð |
| 2 |
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
¡àº¯Êýy=cosxµÄͼÏó¿ÉÓɺ¯Êýy=sin£¨x+
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
¶ÔÓڢܣ¬·½³Ìsin£¨2x+
| ¦Ð |
| 3 |
| ¦Ð |
| 3 |
º¯Êýy=sin£¨2x+
| ¦Ð |
| 3 |
| ¦Ð |
| 2 |
| ¦Ð |
| 6 |
¡àÈô·½³Ìsin£¨2x+
| ¦Ð |
| 3 |
| ¦Ð |
| 2 |
| ¦Ð |
| 6 |
¡àÕýÈ·ÃüÌâµÄÐòºÅÊǢ٢ܣ®
¹Ê´ð°¸Îª£º¢Ù¢Ü£®
µãÆÀ£º±¾Ì⿼²éÁËÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁËÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©=ln£¨2x+1£©£¬Ôòf¡ä£¨0£©=£¨¡¡¡¡£©
| A¡¢0 | ||
| B¡¢1 | ||
| C¡¢2 | ||
D¡¢
|
ÏÂÁи÷×麯ÊýÖУ¬f£¨x£©ºÍg£¨x£©±íʾͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A¡¢f£¨x£©=x0£¬g£¨x£©=1 | ||
B¡¢f£¨x£©=|x|£¬g£¨x£©=
| ||
C¡¢f£¨x£©=2x£¬g£¨x£©=
| ||
D¡¢f£¨x£©=x2£¬g£¨x£©=£¨
|