题目内容
已知数列{
}为等差数列,且a1=1,a2=
.
(1)求数列{an}的通项公式;
(2)设bn=
•an,求数列{
}的前n项和Sn.
| 2n |
| an |
| 4 |
| 3 |
(1)求数列{an}的通项公式;
(2)设bn=
| n+1 |
| (n+2)•2n |
| bn |
| n |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知结合等差数列定义求出数列{
}的公差,然后代入等差数列的通项公式得答案;
(2)把(1)中求得的数列{an}的通项公式代入bn=
•an,整理后利用裂项相消法求数列{
}的前n项和Sn.
| 2n |
| an |
(2)把(1)中求得的数列{an}的通项公式代入bn=
| n+1 |
| (n+2)•2n |
| bn |
| n |
解答:
解:(1)由已知可得,数列{
}的公差为
-
=
-2=1,
∴
=2+(n-1)=n+1,an=
;
(2)由(1)得,bn=
,
∴
=
=
(
-
),
∴Sn=
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)=
.
| 2n |
| an |
| 22 |
| a2 |
| 21 |
| a1 |
| 4 | ||
|
∴
| 2n |
| an |
| 2n |
| n+1 |
(2)由(1)得,bn=
| 1 |
| n+2 |
∴
| bn |
| n |
| 1 |
| (n+2)•n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| n(3n+5) |
| 2(n+1)(n+2) |
点评:本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目