题目内容

9.如图,平面四边形ABCD中,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,则△ADC的面积S为$\frac{3+\sqrt{3}}{2}$.

分析 在△BCD中由正弦定理解出BD,在△ABD中,由余弦定解出∠ADB的度数;代入三角形的面积公式计算.

解答 解:在△BCD中,由正弦定理得:$\frac{BD}{sin∠BCD}$=$\frac{CD}{sin∠CBD}$,
即 $\frac{BD}{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{\frac{1}{2}}$,解得BD=3.
在△ABD中,由余弦定理得:cos∠ADB=$\frac{{AD}^{2}{+BD}^{2}{-AB}^{2}}{2AD•BD}$=$\frac{\sqrt{2}}{2}$
∴∠ADB=45°.
∵∠CBD=30°,∠BCD=120°,∴∠CDB=30°.
∴sin∠ADC=sin(45°+30°)=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∴S△ACD=$\frac{1}{2}$•AD•CDsin∠ADC=$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{3}$×$\frac{\sqrt{6}+\sqrt{2}}{4}$=$\frac{{3+\sqrt{3}}}{2}$,
故答案为:$\frac{3+\sqrt{3}}{2}$.

点评 本题考查了正余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网