题目内容
2.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)的左、右焦点,其离心率为e,点B的坐标为(0,b),直线F1B与双曲线C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴,直线F1B的交点分别为M,R,若△RMF1与△PQF2的面积比为e,则e的值为?分析 分别求出P,Q,M的坐标,利用△RMF1与△PQF2的面积之比为e,|MF2|=|F1F2|=2c,可得3c=xM=$\frac{{c}^{3}}{{c}^{2}-{a}^{2}}$,即可得出结论.
解答
解:由题意,|OB|=b,|OF1|=c.∴kPQ=$\frac{b}{c}$,kMN=-$\frac{c}{b}$.
直线PQ为:y=$\frac{b}{c}$(x+c),与y=$\frac{b}{a}$x.联立得:Q($\frac{ac}{c-a}$,$\frac{bc}{c-a}$);
与y=-$\frac{b}{a}$x.联立得:P($\frac{-ac}{c+a}$,$\frac{bc}{c+a}$).
直线MN为:y-$\frac{bc}{c+a}$=-$\frac{c}{b}$(x-$\frac{-ac}{c+a}$),
令y=0得:xM=$\frac{{c}^{3}}{{c}^{2}-{a}^{2}}$
又△RMF1与△PQF2的面积之比为e,∴|MF2|=|F1F2|=2c,∴3c=xM=$\frac{{c}^{3}}{{c}^{2}-{a}^{2}}$,
解之得:e2=$\frac{3}{2}$,
∴e=$\frac{\sqrt{6}}{2}$.
点评 本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
12.
已知f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的图象的一部分如图所示,则f(x)解析式是( )
| A. | f(x)=2sin($\frac{1}{2}$x-$\frac{π}{4}$) | B. | f(x)=2sin($\frac{1}{2}$x+$\frac{3π}{4}$) | C. | f(x)=2sin(2x-$\frac{π}{4}$) | D. | f(x)=2sin(2x+$\frac{3π}{4}$) |
13.函数$y=cos(-x)cos(\frac{π}{2}-x)$的最小正周期是( )
| A. | $\frac{π}{2}$ | B. | π | C. | $\frac{3π}{2}$ | D. | 2π |