题目内容
设复数z的共轭复数为
,若z=1-i(i为虚数单位)则
+z2的值为
. |
| z |
| ||
| z |
-i
-i
.分析:根据共轭复数的定义求出
,代入要求的式子,利用两个复数代数形式的乘除法法则,化简求出结果.
. |
| z |
解答:解:∵z=1-i,
∴
=1+i,
∴
+z2=
+(1-i)2=
-2i=
-2i=-i,
故答案为-i.
∴
. |
| z |
∴
| ||
| z |
| 1+i |
| 1-i |
| (1+i)(1+i) |
| (1-i)(1+i) |
| 2i |
| 2 |
故答案为-i.
点评:本题主要考查复数的基本概念,复数代数形式的混合运算,属于基础题.
练习册系列答案
相关题目
设复数z的共轭复数为
,若z=1-i(i为虚数单位),则
+z2的值为( )
. |
| z |
| ||
| z |
| A、i | B、-i | C、0 | D、-3i |