ÌâÄ¿ÄÚÈÝ
14£®2016ÄêÔªµ©ÆÚ¼ä£¬Ä³ÊÐПëлá×éÖ¯¡°Ôªµ©±¡±¸ëÍõ´óÈü£¬´óÈü·Ö×ʸñÈü£¨³õÈü£©ºÍ¾«Ó¢Èü£¨³õÈüͨ¹ý²Å¿É²Î¼ÓµÄ¸´Èü£©£¬Ä³ÐŸ밮ºÃÕß¹²ÓÐA¡¢B¡¢CÈýֻПë²ÎÈü£¬ÈýֻПëµÄˮƽÊÇ£º×ʸñÈüͨ¹ýµÄ¸ÅÂÊÒÀ´ÎΪ$\frac{4}{5}$£¬$\frac{3}{4}$£¬$\frac{2}{3}$£¬¾«Ó¢Èü»ñ½±µÄ¸ÅÂÊÒÀ´ÎΪ$\frac{1}{2}$£¬$\frac{2}{3}$£¬$\frac{5}{6}$£¬»ñ½±µÄПëÿֻ½±900Ôª£¬Á½´Î±ÈÈüÏ໥֮¼äûÓÐÓ°Ï죬ПëÖ®¼ä»¥²»Ó°Ï죮£¨1£©ÇóA£¬B£¬C£¬ÈýֻПëÖÐÇ¡ÓÐ2Ö»»ñ½±µÄ¸ÅÂÊ£»
£¨2£©ÓÃX±íʾ´ËП밮ºÃÕß»ñµÃµÄ½±½ðÊý£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûEX£»
£¨3£©´ËП밮ºÃÕßÓµÓиßˮƽµÄПë120Ö»£¬ËüÃÇÎÞ·çʱµÄ·ÉÐÐËٶȵijɼ¨Îª¦Î£¨¹«Àï/Сʱ£©£¬¦Î¡«N£¨80£¬60£©£¬ÈôP£¨60¡Ü¦Î¡Ü80£©=0.35£¬ÊÔ¹À¼ÆËÙ¶ÈÔÚ100£¨¹«Àï/Сʱ£©ÒÔÉϵĸë×ÓÊý£®
·ÖÎö £¨1£©ÉèʼþA±íʾ¡°AֻПë»ñ½±¡±£¬Ê¼þB±íʾ¡°BֻПë»ñ½±¡±£¬Ê¼þC±íʾ¡°CֻПë»ñ½±¡±£¬ÓÉÌâÒâP£¨A£©=$\frac{2}{5}$£¬P£¨B£©=$\frac{1}{2}$£¬P£¨C£©=$\frac{5}{9}$£¬ÓÉ´ËÄÜÇó³öA£¬B£¬C£¬ÈýֻПëÖÐÇ¡ÓÐ2Ö»»ñ½±µÄ¸ÅÂÊ£®
£¨2£©ÓÉÒÑÖªµÃX=0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍEX£®
£¨3£©ÓÉÕý̬·Ö²¼ÐÔÖʵÃP£¨¦Î¡Ü80£©=P£¨¦Î¡Ý80£©=0.5£¬ÓÉÒÑÖªµÃP£¨¦Î¡Ý100£©=0.15£¬ÓÉ´ËÄܹÀ¼ÆËÙ¶ÈÔÚ100£¨¹«Àï/Сʱ£©ÒÔÉϵĸë×ÓÊý£®
½â´ð ½â£º£¨1£©ÉèʼþA±íʾ¡°AֻПë»ñ½±¡±£¬Ê¼þB±íʾ¡°BֻПë»ñ½±¡±£¬Ê¼þC±íʾ¡°CֻПë»ñ½±¡±£¬
ÓÉÌâÒâP£¨A£©=$\frac{4}{5}¡Á\frac{1}{2}$=$\frac{2}{5}$£¬P£¨B£©=$\frac{3}{4}¡Á\frac{2}{3}$=$\frac{1}{2}$£¬P£¨C£©=$\frac{2}{3}¡Á\frac{5}{6}$=$\frac{5}{9}$£¬
¡àA£¬B£¬C£¬ÈýֻПëÖÐÇ¡ÓÐ2Ö»»ñ½±µÄ¸ÅÂÊ£º
P=P£¨AB$\overline{C}$£©+P£¨A$\overline{B}$C£©+P£¨$\overline{A}BC$£©
=$\frac{2}{5}¡Á\frac{1}{2}¡Á\frac{4}{9}$+$\frac{2}{5}¡Á\frac{1}{2}¡Á\frac{5}{9}$+$\frac{3}{5}¡Á\frac{1}{2}¡Á\frac{5}{9}$=$\frac{11}{30}$£®
£¨2£©ÓÉÒÑÖªµÃX=0£¬1£¬2£¬3£¬
P£¨X=0£©=P£¨$\overline{A}\overline{B}\overline{C}$£©=$\frac{3}{5}¡Á\frac{1}{2}¡Á\frac{4}{9}$=$\frac{2}{15}$£¬
P£¨X=2£©=P£¨AB$\overline{C}$£©+P£¨A$\overline{B}$C£©+P£¨$\overline{A}BC$£©
=$\frac{2}{5}¡Á\frac{1}{2}¡Á\frac{4}{9}$+$\frac{2}{5}¡Á\frac{1}{2}¡Á\frac{5}{9}$+$\frac{3}{5}¡Á\frac{1}{2}¡Á\frac{5}{9}$=$\frac{11}{30}$£®
P£¨X=3£©=P£¨ABC£©=$\frac{2}{5}¡Á\frac{1}{2}¡Á\frac{5}{9}$=$\frac{1}{9}$£¬
P£¨X=1£©=1-$\frac{2}{15}-\frac{11}{30}-\frac{1}{9}$=$\frac{7}{18}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 | 3 |
| P | $\frac{2}{15}$ | $\frac{7}{18}$ | $\frac{11}{30}$ | $\frac{1}{9}$ |
£¨3£©¡ß¦Î¡«N£¨80£¬60£©£¬¡àP£¨¦Î¡Ü80£©=P£¨¦Î¡Ý80£©=0.5£¬
¡ßP£¨60¡Ü¦Î¡Ü80£©=0.35£¬¡àP£¨80¡Ü¦Î¡Ü100£©=P£¨60¡Ü¦Î¡Ü80£©=0.35£¬
¡àP£¨¦Î¡Ý100£©=0.5-0.35=0.15£¬
¡ß´ËП밮ºÃÕßÓµÓиßˮƽµÄПë120Ö»£¬
¡à¹À¼ÆËÙ¶ÈÔÚ100£¨¹«Àï/Сʱ£©ÒÔÉϵĸë×ÓÊýΪ£º120¡Á0.15=18£¨Ö»£©£®
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éÕý̬·Ö²¼µÄÓ¦Óã¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬ÊÇÖеµÌ⣮
| A£® | $\frac{2+x}{\sqrt{{x}^{2}+1}£¨2x-1£©^{2}}$ | B£® | -$\frac{x+2}{\sqrt{{x}^{2}+1}£¨2x-1£©^{2}}$ | ||
| C£® | $\frac{4{x}^{2}-x+2}{£¨2x-1£©^{2}}$ | D£® | $\frac{4{x}^{2}-x+2}{£¨2x-1£©^{2}\sqrt{{x}^{2}+1}}$ |
| A£® | $\frac{8}{5}$ | B£® | $\frac{5}{8}$ | C£® | $\frac{5}{3}$ | D£® | $\frac{3}{5}$ |
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |