题目内容
6.(Ⅰ)求sin∠ABC及边AC的长;
(Ⅱ)求sin∠CBD.
分析 (Ⅰ)根据cosC求出sinC,利用三角形内角和定理以及和与差的公式即可求出sin∠ABC,在利用正弦定理可得边AC的长;
(Ⅱ)在△BCD中,根据余弦定理BD,再利用正弦定理可得sin∠CBD的值.
解答 解:(Ⅰ)∵$cosC=\frac{{2\sqrt{7}}}{7}$,C∈(0,π),
∴$sinC=\sqrt{1-{{cos}^2}C}=\frac{{\sqrt{21}}}{7}$,
sin∠ABC=sin(A+C)=sinAcosC+cosAsinC=$\frac{{\sqrt{3}}}{2}•\frac{{2\sqrt{7}}}{7}+\frac{1}{2}•\frac{{\sqrt{21}}}{7}=\frac{{3\sqrt{21}}}{14}$.
由正弦定理:$\frac{AC}{sin∠ABC}=\frac{BC}{sinA}$,![]()
得$AC=\frac{BC}{sinA}•sin∠ABC=3$.
(Ⅱ)由(Ⅰ)可知AC=3,AD=2DC,DC=1,
在△BCD中,根据余弦定理:BD2=DC2+BC2-2DC×BC•cosC=4,
可得:BD=2.
由正弦定理:$\frac{DC}{sin∠CBD}=\frac{BD}{sinC}$,
得$sin∠CBD=\frac{DC×sinC}{BD}=\frac{{\sqrt{21}}}{14}$.
点评 本题考查了正余弦定理的合理运用.三角形内角和定理以及和与差的公式的计算.属于中档题.
练习册系列答案
相关题目
14.定义A-B={x|x∈A且x∉B}.已知A={1,2},B={1,3,4},则A-B=( )
| A. | {1} | B. | {2} | C. | {3,4} | D. | {1,2,3,4} |
1.数列{an}满足an+1=(-1)n•an+n,则{an}的前100项的和S100( )
| A. | 等于2400 | B. | 等于2500 | C. | 等于4900 | D. | 与首项a1有关 |
11.要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为( )
| A. | (C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$) | B. | (C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)+(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$) | ||
| C. | C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$C${\;}_{8}^{2}$ | D. | C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$+C${\;}_{11}^{1}$ |
18.若20件产品中有3件次品,现从中任取2件,其中是互斥事件的是( )
| A. | 恰有1件正品和恰有1件次品 | B. | 恰有1件次品和至少有1件次品 | ||
| C. | 至少有1件次品和至少有1件正品 | D. | 全部是次品和至少有1件正品 |
16.已知函数f(x)=$\frac{{\sqrt{3}}}{2}sin(2x+\frac{π}{3})-{cos^2}x+\frac{1}{2}$(x∈R),则下列说法正确的是( )
| A. | 函数f(x)的最小正周期为$\frac{π}{2}$ | |
| B. | 函数f(x)的图象关于y轴对称 | |
| C. | 点$(\frac{π}{6},0)$为函数f(x)图象的一个对称中心 | |
| D. | 函数f(x)的最大值为$\frac{1}{2}$ |