ÌâÄ¿ÄÚÈÝ

15£®Ä³Í¬Ñ§ÔÚÑо¿ÏàÁÚÈý¸öÕûÊýµÄËãÊõƽ·½¸ùÖ®¼äµÄ¹ØÏµÊ±£¬·¢ÏÖÒÔÏÂÈý¸öʽ×Ó¾ùÊÇÕýÈ·µÄ£º¢Ù$\sqrt{1}$+$\sqrt{3}$£¼2$\sqrt{2}$£»¢Ú$\sqrt{2}$+$\sqrt{4}$£¼2$\sqrt{3}$£»¢Û$\sqrt{3}$+$\sqrt{5}$£¼2$\sqrt{4}$
£¨1£©ÒÑÖª$\sqrt{2}¡Ê£¨1.41$£¬1.42£©£¬$\sqrt{3}¡Ê£¨1.73$£¬1.74£©£¬$\sqrt{5}¡Ê£¨2.23$£¬2.24£©£¬Çë´ÓÒÔÉÏÈý¸öʽ×ÓÖÐÈÎѡһ¸ö£¬½áºÏ´Ë·¶Î§£¬ÑéÖ¤ÆäÕýÈ·ÐÔ£¨×¢Òâ²»ÄܽüËÆ¼ÆË㣩£»
£¨2£©Ç뽫´Ë¹æÂÉÍÆ¹ãÖÁÒ»°ãÇéÐΣ¬²¢Ö¤Ã÷Ö®£®

·ÖÎö £¨1£©½áºÏ´Ë·¶Î§£¬ÑéÖ¤ÆäÕýÈ·ÐÔ£¬
£¨2£©Ò»°ã½áÂÛΪ£ºÈôn¡ÊN*£¬Ôò$\sqrt{n}+\sqrt{n+2}£¼2\sqrt{n+1}$£¬Ó÷ÖÎö·¨ºÍ×ۺϷ¨¼´¿ÉÖ¤Ã÷£®

½â´ð ½â£º£¨1£©ÑéÖ¤¢Ùʽ³ÉÁ¢£º¡ß$\sqrt{3}£¼1.74$£¬
¡à$\sqrt{1}+\sqrt{3}£¼2.74$£¬
¡ß$\sqrt{2}£¾1.41$£¬
¡à$2\sqrt{2}£¾2.82$£¬
¡à$\sqrt{1}+\sqrt{3}£¼2\sqrt{2}$
£¨2£©Ò»°ã½áÂÛΪ£ºÈôn¡ÊN*£¬Ôò$\sqrt{n}+\sqrt{n+2}£¼2\sqrt{n+1}$£¬Ö¤Ã÷ÈçÏ£º
Ö¤·¨Ò»£ºÒªÖ¤£º$\sqrt{n}+\sqrt{n+2}£¼2\sqrt{n+1}$
Ö»ÐèÖ¤£º${£¨\sqrt{n}+\sqrt{n+2}£©^2}£¼{£¨2\sqrt{n+1}£©^2}$
¼´Ö¤£º$2n+2+2\sqrt{n}\sqrt{n+2}£¼4n+4$
Ò²¾ÍÊÇÖ¤£º$\sqrt{n}\sqrt{n+2}£¼n+1$
Ö»ÐèÖ¤£ºn£¨n+2£©£¼n2+2n+1
¼´Ö¤£º0£¼1£¬ÏÔÈ»³ÉÁ¢
¹Ê$\sqrt{n}+\sqrt{n+2}£¼2\sqrt{n+1}$£¬
Ö¤·¨¶þ£º$\sqrt{n+2}-\sqrt{n+1}$=$\frac{{£¨\sqrt{n+2}-\sqrt{n+1}£©£¨\sqrt{n+2}+\sqrt{n+1£©}}}{{\sqrt{n+2}+\sqrt{n+1}}}$£¬
=$\frac{1}{{\sqrt{n+2}+\sqrt{n+1}}}$$\sqrt{n+1}-\sqrt{n}$£¬
=$\frac{{£¨\sqrt{n+1}-\sqrt{n}£©£¨\sqrt{n+1}+\sqrt{n}£©}}{{\sqrt{n+1}+\sqrt{n}}}$£¬
=$\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$£¬
¡ßn¡ÊN*£¬$\sqrt{n+2}+\sqrt{n+1}£¾$$\sqrt{n+1}+\sqrt{n}£¾0$£¬
¡à$\frac{1}{{\sqrt{n+2}+\sqrt{n+1}}}£¼$$\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$£¬
¡à$\sqrt{n+2}-\sqrt{n+1}£¼$$\sqrt{n+1}-\sqrt{n}$£¬
¡à$\sqrt{n}+\sqrt{n+2}£¼2\sqrt{n+1}$

µãÆÀ ±¾Ì⿼²éÁË·ÖÎö·¨ºÍ×ۺϷ¨£¬¹Ø¼üÕÆÎÕÖ¤Ã÷¸ñʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø