题目内容

3.如图所示,一个圆柱形乒乓球筒,高为40厘米,底面半径为4厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为$\frac{\sqrt{15}}{4}$.

分析 设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),由题意求出a,b,c,由此能求出该椭圆的离心率.

解答 解:不妨设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),
由题意得$\left\{\begin{array}{l}{2a=40-8}\\{b=4}\end{array}\right.$,
解得a=16,b=4,c=$\sqrt{256-16}$=4$\sqrt{15}$,
∴该椭圆的离心率为e=$\frac{c}{a}$=$\frac{\sqrt{15}}{4}$.
故答案为:$\frac{\sqrt{15}}{4}$.

点评 本题考查椭圆的离心率的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网