题目内容

如图,设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.
(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;
(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程,圆锥曲线中的最值与范围问题
分析:(Ⅰ)设直线l的方程为y=kx+m(k<0),由
y=kx+m
x2
a2
+
y2
b2
=1
,消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0,利用△=0,可求得在第一象限中点P的坐标;
(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=
|
-a2k
b2+a2k2
+
b2k
b2+a2k2
|
1+k2
,整理即可证得点P到直线l1的距离的最大值为a-b..
解答: 解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由
y=kx+m
x2
a2
+
y2
b2
=1
,消去y得
(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.
由于直线l与椭圆C只有一个公共点P,故△=0,即b2-m2+a2k2=0,解得点P的坐标为
(-
a2km
b2+a2k2
b2m
b2+a2k2
),
又点P在第一象限,故点P的坐标为P(
-a2k
b2+a2k2
b2
b2+a2k2
).
(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离
d=
|
-a2k
b2+a2k2
+
b2k
b2+a2k2
|
1+k2

整理得:d=
a2-b2
b2+a2+a2k2+
b2
k2

因为a2k2+
b2
k2
≥2ab,所以
a2-b2
b2+a2+a2k2+
b2
k2
a2-b2
b2+a2+2ab
=a-b,当且仅当k2=
b
a
时等号成立.
所以,点P到直线l1的距离的最大值为a-b.
点评:本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网