ÌâÄ¿ÄÚÈÝ
ij¹«Ë¾³Ðµ£ÁËÿÌìÖÁÉÙ°áÔË280¶ÖË®ÄàµÄÈÎÎñ£¬ÒÑÖª¸Ã¹«Ë¾ÓÐ6Á¾AÐÍ¿¨³µºÍ8Á¾BÐÍ¿¨³µ£®ÓÖÒÑÖªAÐÍ¿¨³µÃ¿ÌìÿÁ¾µÄÔËÔØÁ¿Îª30¶Ö£¬³É±¾·ÑΪ0.9ǧԪ£»BÐÍ¿¨³µÃ¿ÌìÿÁ¾µÄÔËÔØÁ¿Îª40¶Ö£¬³É±¾·ÑΪ1ǧԪ£®
£¨1£©Èç¹ûÄãÊǹ«Ë¾µÄ¾Àí£¬ÎªÊ¹¹«Ë¾Ëù»¨µÄ³É±¾·Ñ×îС£¬Ã¿ÌìÓ¦ÅɳöAÐÍ¿¨³µ¡¢BÐÍ¿¨³µ¸÷¶àÉÙÁ¾£¿
£¨2£©ÔÚ£¨1£©µÄËùÇóÇøÓòÄÚ£¬ÇóÄ¿±êº¯Êýz=
µÄ×î´óÖµºÍ×îСֵ£®
£¨1£©Èç¹ûÄãÊǹ«Ë¾µÄ¾Àí£¬ÎªÊ¹¹«Ë¾Ëù»¨µÄ³É±¾·Ñ×îС£¬Ã¿ÌìÓ¦ÅɳöAÐÍ¿¨³µ¡¢BÐÍ¿¨³µ¸÷¶àÉÙÁ¾£¿
£¨2£©ÔÚ£¨1£©µÄËùÇóÇøÓòÄÚ£¬ÇóÄ¿±êº¯Êýz=
| y |
| x+1 |
¿¼µã£º¼òµ¥ÏßÐԹ滮µÄÓ¦ÓÃ
רÌ⣺ÊýÐνáºÏ·¨,²»µÈʽµÄ½â·¨¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©Ïȸù¾ÝÌâÒ⣬Áгö²»µÈʽ×顢Ŀ±êº¯Êý£¬×÷³ö¿ÉÐÐÓò£¬ÀûÓÃͼÏó¿ÉÇó¹«Ë¾Ëù»¨µÄ³É±¾·Ñ×îС£¬Ã¿ÌìÓ¦ÅɳöAÐÍ¿¨³µ¡¢BÐÍ¿¨³µ£»
£¨2£©ÀûÓã¨1£©µÄÇøÓò£¬¸ù¾ÝÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒåÊÇÇøÓòÄڵĵãÓ루-1£¬0£©Á¬ÏßµÄбÂÊ£¬¿ÉÇóÄ¿±êº¯Êýz=
µÄ×î´óÖµºÍ×îСֵ£®
£¨2£©ÀûÓã¨1£©µÄÇøÓò£¬¸ù¾ÝÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒåÊÇÇøÓòÄڵĵãÓ루-1£¬0£©Á¬ÏßµÄбÂÊ£¬¿ÉÇóÄ¿±êº¯Êýz=
| y |
| x+1 |
½â´ð£º
½â£º£¨1£©É蹫˾ÿÌìÅɳöAÐÍ¿¨³µxÁ¾£¬BÐÍ¿¨³µyÁ¾£¬¹«Ë¾Ëù»¨µÄ³É±¾·ÑΪzǧԪ£¬¡£¨1·Ö£©
¸ù¾ÝÌâÒ⣬µÃ
£¬Ä¿±êº¯Êýz=0.9x+y£¬¡£¨3·Ö£©
×÷³ö¸Ã²»µÈʽ×é±íʾµÄ¿ÉÐÐÓò£¬ÈçÏÂͼ£®
¡£¨5·Ö£©
¿¼ÂÇz=0.9x+y£¬±äÐÎΪy=-0.9x+z£¬ÕâÊÇÒÔ-0.9ΪбÂÊ£¬zΪyÖáÉϵĽؾàµÄƽÐÐÖ±Ïß×壮
¾¹ý¿ÉÐÐÓò£¬Æ½ÐÐÒÆ¶¯Ö±Ïߣ¬µ±Ö±Ïß¾¹ýµã£¨0£¬7£©Ê±£¬Ö±ÏßÔÚyÖáÉϵĽؾà×îС£¬¼´zÈ¡×îСֵ£¬Îª7¡£¨7·Ö£©
´ð£º¹«Ë¾Ã¿ÌìÅɳöAÐÍ¿¨³µ0Á¾£¬BÐÍ¿¨³µ7Á¾Ê±£¬Ëù»¨µÄ³É±¾·Ñ×îµÍ£¬Îª7ǧԪ£®¡£¨8·Ö£©
£¨2£©ÀûÓã¨1£©µÄÇøÓò£¬¸ù¾ÝÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒåÊÇÇøÓòÄڵĵãÓ루-1£¬0£©Á¬ÏßµÄбÂÊ£¬¿ÉµÃº¯ÊýÔÚ£¨0£¬8£©´¦È¡×î´óÖµ8£¬ÔÚ£¨6£¬3£©´¦È¡×îСֵ
£®
¸ù¾ÝÌâÒ⣬µÃ
|
×÷³ö¸Ã²»µÈʽ×é±íʾµÄ¿ÉÐÐÓò£¬ÈçÏÂͼ£®
¿¼ÂÇz=0.9x+y£¬±äÐÎΪy=-0.9x+z£¬ÕâÊÇÒÔ-0.9ΪбÂÊ£¬zΪyÖáÉϵĽؾàµÄƽÐÐÖ±Ïß×壮
¾¹ý¿ÉÐÐÓò£¬Æ½ÐÐÒÆ¶¯Ö±Ïߣ¬µ±Ö±Ïß¾¹ýµã£¨0£¬7£©Ê±£¬Ö±ÏßÔÚyÖáÉϵĽؾà×îС£¬¼´zÈ¡×îСֵ£¬Îª7¡£¨7·Ö£©
´ð£º¹«Ë¾Ã¿ÌìÅɳöAÐÍ¿¨³µ0Á¾£¬BÐÍ¿¨³µ7Á¾Ê±£¬Ëù»¨µÄ³É±¾·Ñ×îµÍ£¬Îª7ǧԪ£®¡£¨8·Ö£©
£¨2£©ÀûÓã¨1£©µÄÇøÓò£¬¸ù¾ÝÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒåÊÇÇøÓòÄڵĵãÓ루-1£¬0£©Á¬ÏßµÄбÂÊ£¬¿ÉµÃº¯ÊýÔÚ£¨0£¬8£©´¦È¡×î´óÖµ8£¬ÔÚ£¨6£¬3£©´¦È¡×îСֵ
| 3 |
| 7 |
µãÆÀ£º±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²éÏßÐԹ滮֪ʶµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èôf(x)=
£¬Ôòf£¨2016£©µÈÓÚ£¨¡¡¡¡£©
|
| A¡¢0 |
| B¡¢ln2 |
| C¡¢1+e2 |
| D¡¢1+ln2 |
ÊýÁÐ{an}ÖÐa1=1£¬a5=13£¬an+2+an=2an+1£»ÊýÁÐ{bn}ÖУ¬b2=6£¬b3=3£¬bn+2bn=b
£¬ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬ÒÑÖªµãÁÐP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬P3£¨a3£¬b3£©£¬¡£¬Pn£¨an£¬bn£©¡£¬ÔòÏòÁ¿
+
+
+¡+
µÄ×ø±êΪ£¨¡¡¡¡£©
2 n+1 |
| P1P2 |
| P3P4 |
| P5P6 |
| P2009P2010 |
A¡¢£¨3015£¬8[£¨
| ||
B¡¢£¨3012£¬8[£¨
| ||
C¡¢£¨3015£¬8[£¨
| ||
D¡¢£¨3018£¬8[£¨
|
º¯Êýf£¨x£©=2x2-kx-8ÔÚÇø¼ä[1£¬2]Éϲ»µ¥µ÷£¬ÔòʵÊýkµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A¡¢[4£¬8] |
| B¡¢£¨-¡Þ£¬4]¡È[8£¬+¡Þ£© |
| C¡¢£¨-¡Þ£¬4£©¡È£¨8£¬+¡Þ£© |
| D¡¢£¨4£¬8£© |