题目内容

一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
实验顺序第一次第二次第三次第四次第五次
零件数x(个)1020304050
加工时间y(分钟)6267758089
(Ⅰ)在5次试验中任取2次,记加工时间分别为a,b,求事件:加工时间a,b均小于80分钟的概率;
(Ⅱ)请根据第二次、第三次、第四次试验的数据,求出y关于x的线性回归方程
y
=
b
x+
a
,参考公式如下:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x
.
x
=
x1+x2+…+xn
n
.
y
=
y1+y2+…+yn
n
考点:线性回归方程
专题:计算题,概率与统计
分析:(1)5次试验中任取2次,共有
C
2
5
=10个,时间a,b均小于80分钟的有
C
2
3
=3个,即可求出事件a,b均小于80分钟的概率;
(2)利用相关系数公式求解b和a的值,代入回归直线方程即可.
解答: 解:(1)5次试验中任取2次,共有
C
2
5
=10个,时间a,b均小于80分钟的有
C
2
3
=3个,
∴事件a,b均小于80分钟的概率为
3
10

(2)
.
x
=
1
3
(20+30+40)=30,
.
y
=
1
3
(67+75+80)=74,
∴b=
(20-30)×(67-74)+(30-30)×(75-74)+(40-30)×(80-74)
(20-30)2+(30-30)2+(40-30)2
=
13
20

∴a=74-
13
20
×30
=54.5,
∴y关于x的线性回归方程
y
=
13
20
x+54.5.
点评:本题考查概率的计算,考查了线性回归方程,是基础的计算题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网