题目内容
“设x,y∈R,若x2+y2=0,则x=y=0”的逆否命题是( )
| A、设x,y∈R,若x≠0且y≠0,则x2+y2≠0 |
| B、设x,y∈R,若x≠0或y≠0,则x2+y2≠0 |
| C、设x,y∈R,若x≠y≠0,则x2+y2≠0 |
| D、设x,y∈R,若x=y≠0,则x2+y2≠0 |
考点:四种命题
专题:简易逻辑
分析:直接利用逆否命题的定义,写出其逆否命题即可判断选项.
解答:
解:“设x,y∈R,若x2+y2=0,则x=y=0”,逆否命题是:设x,y∈R,若x≠0或y≠0,则x2+y2≠0.
故选:B.
故选:B.
点评:本题考查四种命题的逆否关系,注意原命题和其逆否命题是双否定,条件与结论互换,属容易题.
练习册系列答案
相关题目
对于函数y=f(x),以下说法正确的有( )
①y是x的函数;②对于不同的x值,y值也不同;③函数是一种对应,是多对一或一对一,不是一对多.
①y是x的函数;②对于不同的x值,y值也不同;③函数是一种对应,是多对一或一对一,不是一对多.
| A、①② | B、①③ | C、②③ | D、①②③ |
已知向量
=(ex+
,-x),
=(1,t)若函数f(x)=
•
在区间(-1,1)上存在增区间,则t的取值范围为( )
| a |
| x2 |
| 2 |
| b |
| a |
| b |
| A、(-∞,e) |
| B、(-∞,e) |
| C、(-∞,e+1) |
| D、(-∞,e+1) |
已知向量
=(2,k),
=(1,2),若
⊥
,则k的值为( )
| a |
| b |
| a |
| b |
| A、-1 | B、1 | C、4 | D、-4 |
若双曲线
-
=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的
,则该双曲线的离心率是( )
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 3 |
A、
| ||||
B、
| ||||
| C、2 | ||||
D、
|
已知函数f(x)=
,若f(1)+f(a)=2,则实数a的可能取值为( )
|
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若θ∈(0,
),a=lnsinθ,b=2sinθ,c=(sinθ)cosθ,则( )
| π |
| 2 |
| A、c>b>a |
| B、b>a>c |
| C、a>b>c |
| D、b>c>a |
等比数列{an}中an>0,q=2,a3•a11=16,则a5=( )
| A、1 | B、2 | C、4 | D、8 |