题目内容
7.O为△ABC内一点,记x=S△BOC,y=S△AOC,z=S△AOB,求证:x•$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=$\overrightarrow{0}$.分析 设OA=a,OB=b,OC=c,∠AOB=α,∠AOC=β,用a,b,c,α,β表示出x,y,z,求出x•$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$的坐标.
解答 解:设OA=a,OB=b,OC=c,∠AOB=α,∠AOC=β,
则A(a,0),B(bcosα,bsinα),C(ccosβ,-csinβ).
∴x=S△BOC=$\frac{1}{2}bc$sin(2π-α-β)=-$\frac{1}{2}$bcsin(α+β)=-$\frac{1}{2}$bcsinαcosβ-$\frac{1}{2}$bccosαsinβ,y=S△AOC=$\frac{1}{2}acsinβ$,z=S△AOB=$\frac{1}{2}absinα$.
∴x•$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=(-$\frac{1}{2}$bcsinαcosβ-$\frac{1}{2}$bccosαsinβ,0)+($\frac{1}{2}$abccosαsinβ,$\frac{1}{2}abc$sinαsinβ)+($\frac{1}{2}$abcsinαcosβ,-$\frac{1}{2}abc$sinαsinβ)=(0,0).
∴x•$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=$\overrightarrow{0}$.
点评 本题考查了向量的坐标运算,向量在解中的应用,属于中档题.
练习册系列答案
相关题目
17.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=3-x2,函数g(x)=sin(|x|),则使方程f(x)=g(x)在[-10,10]内根的个数为( )
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
18.已知集合A={x|x∈Z},B={x|0<x<3},则A∩B=( )
| A. | {x|0<x<3} | B. | {1,2} | C. | {x|1≤x≤2} | D. | {x|x∈Z} |
17.要得到y=2sin(2x+$\frac{2π}{3}$)的图象,需要将函数y=2sin(2x-$\frac{2π}{3}$)的图象( )
| A. | 向左平移$\frac{2π}{3}$个单位 | B. | 向右平移$\frac{2π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{3}$个单位 | D. | 向右平移$\frac{π}{3}$个单位 |