题目内容

当0<x<4时,y=2x•(8-2x)的最大值为
 
考点:二次函数的性质
专题:函数的性质及应用
分析:由已知中的函数解析式,分析函数图象和性质,结合已知中x的取值范围,可得函数的最值.
解答: 解:∵y=2x•(8-2x)=-4x2+16x的图象是开口朝下,且以直线x=2为对称轴的抛物线,
∴若0<x<4,则当x=2时,函数取最大16,
故答案为:16.
点评:本题考查的知识点是二次函数的性质,其中分析出函数的图象和性质是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网