ÌâÄ¿ÄÚÈÝ

19£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨{¦È+\frac{¦Ð}{4}}£©$£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¸³öÆä±íʾºÎÖÖÇúÏߣ»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÈôµãPµÄÖ±½Ç×ø±êΪ£¨1£¬0£©£¬ÊÔÇóµ±$¦Á=\frac{¦Ð}{4}$ʱ£¬|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©ÇúÏßC2£º$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{¦Ð}{4}£©$£¬¿ÉÒÔ»¯Îª${¦Ñ^2}=2\sqrt{2}¦Ñcos£¨¦È+\frac{¦Ð}{4}£©$£¬¦Ñ2=2¦Ñcos¦È-2¦Ñsin¦È£¬¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¸³öÆä±íʾºÎÖÖÇúÏߣ»
£¨2£©µ±$¦Á=\frac{¦Ð}{4}$ʱ£¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨Îª²ÎÊý£©£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåÇóµ±$¦Á=\frac{¦Ð}{4}$ʱ£¬|PA|+|PB|µÄÖµ£®

½â´ð ½â£º£¨1£©ÇúÏßC2£º$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{¦Ð}{4}£©$£¬¿ÉÒÔ»¯Îª${¦Ñ^2}=2\sqrt{2}¦Ñcos£¨¦È+\frac{¦Ð}{4}£©$£¬¦Ñ2=2¦Ñcos¦È-2¦Ñsin¦È£¬
Òò´Ë£¬ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-2x+2y=0¡­£¨4·Ö£©
Ëü±íʾÒÔ£¨1£¬-1£©ÎªÔ²ÐÄ¡¢$\sqrt{2}$Ϊ°ë¾¶µÄÔ²£®¡¡         ¡­£¨5·Ö£©
£¨2£©µ±$¦Á=\frac{¦Ð}{4}$ʱ£¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨Îª²ÎÊý£©
µãP£¨1£¬0£©ÔÚÖ±ÏßÉÏ£¬ÇÒÔÚÔ²CÄÚ£¬°Ñ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$
´úÈëx2+y2-2x+2y=0ÖеÃ${t^2}+\sqrt{2}t-1=0$¡­£¨6·Ö£©
ÉèÁ½¸öʵÊý¸ùΪt1£¬t2£¬ÔòA£¬BÁ½µãËù¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬
Ôò${t_1}+{t_2}=-\sqrt{2}$£¬t1t2=-1¡­£¨8·Ö£©¡à$|PA|+|PB|=|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\sqrt{6}$¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø