ÌâÄ¿ÄÚÈÝ
19£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨{¦È+\frac{¦Ð}{4}}£©$£®£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¸³öÆä±íʾºÎÖÖÇúÏߣ»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÈôµãPµÄÖ±½Ç×ø±êΪ£¨1£¬0£©£¬ÊÔÇóµ±$¦Á=\frac{¦Ð}{4}$ʱ£¬|PA|+|PB|µÄÖµ£®
·ÖÎö £¨1£©ÇúÏßC2£º$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{¦Ð}{4}£©$£¬¿ÉÒÔ»¯Îª${¦Ñ^2}=2\sqrt{2}¦Ñcos£¨¦È+\frac{¦Ð}{4}£©$£¬¦Ñ2=2¦Ñcos¦È-2¦Ñsin¦È£¬¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢Ö¸³öÆä±íʾºÎÖÖÇúÏߣ»
£¨2£©µ±$¦Á=\frac{¦Ð}{4}$ʱ£¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨Îª²ÎÊý£©£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåÇóµ±$¦Á=\frac{¦Ð}{4}$ʱ£¬|PA|+|PB|µÄÖµ£®
½â´ð ½â£º£¨1£©ÇúÏßC2£º$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{¦Ð}{4}£©$£¬¿ÉÒÔ»¯Îª${¦Ñ^2}=2\sqrt{2}¦Ñcos£¨¦È+\frac{¦Ð}{4}£©$£¬¦Ñ2=2¦Ñcos¦È-2¦Ñsin¦È£¬
Òò´Ë£¬ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-2x+2y=0¡£¨4·Ö£©
Ëü±íʾÒÔ£¨1£¬-1£©ÎªÔ²ÐÄ¡¢$\sqrt{2}$Ϊ°ë¾¶µÄÔ²£®¡¡ ¡£¨5·Ö£©
£¨2£©µ±$¦Á=\frac{¦Ð}{4}$ʱ£¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨Îª²ÎÊý£©
µãP£¨1£¬0£©ÔÚÖ±ÏßÉÏ£¬ÇÒÔÚÔ²CÄÚ£¬°Ñ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$
´úÈëx2+y2-2x+2y=0ÖеÃ${t^2}+\sqrt{2}t-1=0$¡£¨6·Ö£©
ÉèÁ½¸öʵÊý¸ùΪt1£¬t2£¬ÔòA£¬BÁ½µãËù¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬
Ôò${t_1}+{t_2}=-\sqrt{2}$£¬t1t2=-1¡£¨8·Ö£©¡à$|PA|+|PB|=|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\sqrt{6}$¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{¦Ð}{12}$ | B£® | $-\frac{¦Ð}{12}$ | C£® | $\frac{¦Ð}{4}$ | D£® | 0 |
| A£® | 36¦Ð+288 | B£® | 36¦Ð+216 | C£® | 33¦Ð+288 | D£® | 33¦Ð+216 |
| A£® | $\frac{3}{4}£¼p¡Ü\frac{7}{8}$ | B£® | $p£¾\frac{5}{16}$ | C£® | $\frac{7}{8}¡Üp£¼\frac{5}{16}$ | D£® | $\frac{7}{8}£¼p¡Ü\frac{5}{16}$ |