题目内容

已知函数f(x)=
2x-1
2x+1

(1)证明函数f(x)是R上的增函数;
(2)求函数f(x)的值域;
(3)令g(x)=
x
f(x)
,判定函数g(x)的奇偶性,并证明.
考点:函数奇偶性的性质,函数的值域,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)用定义法,先在定义域上任取两个变量,且界定大小,再作差变形看符号.当自变量变化与函数值变化一致时,为增函数;当自变量变化与函数值变化相反时,为减函数.
(2)利用函数的单调性求函数的值域;
(3)用函数奇偶性的定义进行判断.
解答: 解:(1)设x1<x2∈R,f(x1)-f(x2
=
2x1-1
2x1+1
-
2x2-1
2x2+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)

∵x1<x2
∴2(2x1-2x2)<0
∴f(x1)<f(x2
∴f(x)是R上的增函数;
(2)∵f(x)=
2x-1
2x+1
=1-
2
2x+1

∵2x>0,
∴2x+1>1,
∴0<
2
2x+1
<2,
∴-1<1-
2
2x+1
<1,
f(x)的值域为(-1,1);
(3)因为g(x)=
x
f(x)
=
x(2x+1)
2x-1

所以g(x)的定义域是{x|x≠0},
g(-x)=
-x(2x+1)
2x-1
=
x(2x+1)
2x-1
=g(x),
函数g(x)为偶函数.
点评:本题主要考查函数奇偶性的判断,一般用定义;还考查了证明函数的单调性,一般用定义和导数,用定义时,要注意变形到位,用导数时,要注意端点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网