题目内容
对两个变量x和y进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是( )
A、由样本数据得到的回归方程
| ||||||||||||
| B、残差平方和越小的模型,拟合的效果越好 | ||||||||||||
C、用相关指数R2=1-
| ||||||||||||
D、用相关指数R2=1-
|
考点:回归分析
专题:计算题,概率与统计
分析:线性回归方程一定过样本中心点,在一组模型中残差平方和越小,拟合效果越好,相关指数表示拟合效果的好坏,指数越小,相关性越.
解答:
解:样本中心点在直线上,故A正确,
残差平方和越小的模型,拟合效果越好,故B正确,
R2越大拟合效果越好,故C不正确,D正确,
故选:C.
残差平方和越小的模型,拟合效果越好,故B正确,
R2越大拟合效果越好,故C不正确,D正确,
故选:C.
点评:本题考查衡量两个变量之间相关关系的方法,要想知道两个变量之间的有关或无关的精确的可信程度,只有利用独立性检验的有关计算,才能做出判断.属于基础题.
练习册系列答案
相关题目
函数y=x3是( )
| A、偶函数且是增函数 |
| B、奇函数且是增函数 |
| C、偶函数且是减函数 |
| D、奇函数且是减函数 |
已知函数f(x)=
,若不等式f(m+1)≥f(tm-1)对任意m∈[-1,1]恒成立,则实数t的取值范围是( )
|
| A、[-1,1]∪(1,3] |
| B、[-1,3] |
| C、[1,3] |
| D、(-∞,-1]∪[3,+∞) |
函数y=x2在区间[-1,2]上( )
| A、是增函数 |
| B、是减函数 |
| C、既是增函数又是减函数 |
| D、不具有单调性 |