题目内容
有下列四个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤1,则x2+2x+q=0有实根”的逆命题;
④“等边三角形的三个内角相等”的逆否命题;
其中真命题的序号是 .
①“若x+y=0,则x,y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤1,则x2+2x+q=0有实根”的逆命题;
④“等边三角形的三个内角相等”的逆否命题;
其中真命题的序号是
考点:命题的真假判断与应用
专题:简易逻辑
分析:①写出“若x+y=0,则x,y互为相反数”的逆命题,再判断其真假即可;
②写出“全等三角形的面积相等”的否命题,再判断其真假即可;
③写出“若q≤1,则x2+2x+q=0有实根”的逆命题,再分析、判断其真假即可;
④利用原命题与其逆否命题的真假性一致,可判断原命题的真假,从而得其逆否命题的真假.
②写出“全等三角形的面积相等”的否命题,再判断其真假即可;
③写出“若q≤1,则x2+2x+q=0有实根”的逆命题,再分析、判断其真假即可;
④利用原命题与其逆否命题的真假性一致,可判断原命题的真假,从而得其逆否命题的真假.
解答:
解:①“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,正确;
②“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等”,错误,故②错误;
③∵x2+2x+q=0有实根,∴△=4-4q≥0,即q≤1,
∴“若q≤1,则x2+2x+q=0有实根”的逆命题“若x2+2x+q=0有实根,则q≤1”正确;
④∵等边三角形的三个内角相等,原命题正确,原命题与其逆否命题的真假性一致,∴其逆否命题也正确;
综上所述,真命题的序号是①③④.
故答案为:①③④.
②“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等”,错误,故②错误;
③∵x2+2x+q=0有实根,∴△=4-4q≥0,即q≤1,
∴“若q≤1,则x2+2x+q=0有实根”的逆命题“若x2+2x+q=0有实根,则q≤1”正确;
④∵等边三角形的三个内角相等,原命题正确,原命题与其逆否命题的真假性一致,∴其逆否命题也正确;
综上所述,真命题的序号是①③④.
故答案为:①③④.
点评:本题考查命题的真假判断与应用,着重考查四种命题间的关系,属于中档题.
练习册系列答案
相关题目
对两个变量x和y进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是( )
A、由样本数据得到的回归方程
| ||||||||||||
| B、残差平方和越小的模型,拟合的效果越好 | ||||||||||||
C、用相关指数R2=1-
| ||||||||||||
D、用相关指数R2=1-
|