ÌâÄ¿ÄÚÈÝ
8£®ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊǢܢݣ®£¨ÌîÉÏËùÓÐÕýÈ·µÄÐòºÅ£©¢ÙÈç¹ûb=$\sqrt{ac}$£¬ÄÇôÊýÁÐa£¬b£¬cÊǵȱÈÊýÁУ»
¢ÚÊýÁÐ{an}µÄǰnÏîºÍΪSn=3n2+n+1£¬Ôò¸ÃÊýÁеÄͨÏʽan=6n-2£¨n¡ÊN*£©£»
¢ÛµÈ±ÈÊýÁÐa£¬a2£¬¡£¬an£¬¡µÄǰnÏîºÍΪSn=$\frac{{a£¨1-{a^n}£©}}{1-a}$£»
¢ÜÈôÊýÁÐ{an}Ϊ¹«²î²»ÎªÁãµÄµÈ²îÊýÁУ¬ÔòÊýÁÐ{an}Öв»´æÔÚp£¬q£¨p¡Ùq£©Ê¹µÃap=aq£»
¢ÝµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôS10=5£¬S20=25£¬ÔòS30=60£®
·ÖÎö ·Ö±ð¾Ù·´ÀýÅжϢ٢ڢۣ¬ÔÙ¸ù¾Ý·´Ö¤·¨ÅжϢܣ¬ÔÙ¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊÅжϢݣ®
½â´ð ½â£º¶ÔÓÚ¢ÙÈç¹ûb=$\sqrt{ac}$£¬ÄÇôÊýÁÐa£¬b£¬cÊǵȱÈÊýÁУ¬µ±a=b=c=0ʱ²»³ÉÁ¢£¬
¶ÔÓÚ¢Úµ±n=1ʱ£¬S1=a1=3+1+1=5£¬Óëa1=6-2=4£¬Ïàì¶Ü£¬¹Ê²»³ÉÁ¢£¬
¶ÔÓÚ¢Û£¬µ±a=1ʱ£¬²»³ÉÁ¢£¬
¶ÔÓڢܣ¬¼ÙÉè´æÔÚ£¬É蹫²îΪd£¬Ê×ÏîΪa1£¬ÓÉap=aq¿ÉµÃa1+£¨p-1£©d=a1+£¨q-1£©d£¬ÓÚÊǿɵÃp=q£¬Óëp¡Ùqì¶Ü£¬¹Ê¼ÙÉè²»³ÉÁ¢£¬¹Ê³ÉÁ¢£¬
¶ÔÓڢݵȲîÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÔòS10=5£¬S20-S10=20£¬S30-S20=35³ÉÁ¢µÈ²îÊýÁУ¬¹ÊS30=60ÕýÈ·£¬
¹Ê´ð°¸Îª£º¢Ü¢Ý£®
µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄÐÔÖʺÍͨÏʽÒÔ¼°µÈ±ÈÊýÁе͍ÒåºÍǰnÏîºÍ¹«Ê½£¬ÊôÓÚÖеµÌâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®ÒÑÖª½Ç¦ÁµÄÖÕ±ßÔÚ$y=-\frac{4}{3}x£¨x¡Ü0£©$ÉÏ£¬Ôòcos¦ÁµÄÖµÊÇ£¨¡¡¡¡£©
| A£® | $\frac{3}{5}$ | B£® | $-\frac{3}{5}$ | C£® | $\frac{4}{5}$ | D£® | $-\frac{4}{5}$ |
13£®Ö±Ïßy-3=-$\frac{3}{2}$£¨x+4£©µÄбÂÊΪk£¬ÔÚyÖáÉϵĽؾàΪb£¬ÔòÓУ¨¡¡¡¡£©
| A£® | k=-$\frac{3}{2}$£¬b=3 | B£® | k=-$\frac{3}{2}$£¬b=-2 | C£® | k=-$\frac{3}{2}$£¬b=-3 | D£® | k=-$\frac{2}{3}$£¬b=-3 |
20£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{y¡Ýx+2}\\{x+y¡Ü6}\\{x¡Ý1}\end{array}$£¬Ôòz=log${\;}_{£¨{\frac{1}{2}}£©}}$£¨2|x-2|+|y|£©µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
| A£® | ${log_{£¨{\frac{1}{2}}£©}}7$ | B£® | ${log_{£¨{\frac{1}{2}}£©}}5$ | C£® | -2 | D£® | 2 |
17£®ÒÑ֪˫ÇúÏß$\frac{x^2}{4}-\frac{y^2}{12}=1$µÄÀëÐÄÂÊΪe£¬Å×ÎïÏßx=my2µÄ½¹µãΪ£¨e£¬0£©£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
| A£® | 4 | B£® | $\frac{1}{4}$ | C£® | 8 | D£® | $\frac{1}{8}$ |
18£®Å×ÎïÏßy=-2x2µÄ½¹µã×ø±êÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬$\frac{1}{8}$£© | B£® | £¨0£¬-$\frac{1}{8}$£© | C£® | £¨$\frac{1}{8}$£¬0£© | D£® | £¨-$\frac{1}{8}$£¬0£© |