题目内容

12.如图,在△ABC 中,点D在边 AB上,且$\frac{AD}{DB}$=$\frac{1}{3}$.记∠ACD=α,
∠BCD=β.
(Ⅰ)求证:$\frac{AC}{BC}$=$\frac{sinβ}{3sinα}$
(Ⅱ)若α=$\frac{π}{6}$,β=$\frac{π}{2}$,AB=$\sqrt{19}$,求BC 的长.

分析 (I)分别在△ACD和△BCD中使用正弦定理,根据sin∠ADC=sin∠BDC和$\frac{AD}{DB}=\frac{1}{3}$得出结论.
(II)利用(I)的结论可知$\frac{AC}{BC}=\frac{2}{3}$,在△ABC中使用余弦定理解出BC.

解答 解:(Ⅰ)在△ACD中,由正弦定理得:$\frac{AC}{sin∠ADC}=\frac{AD}{sinα}$,
在△BCD中,由正弦定理得:$\frac{BC}{sin∠BDC}=\frac{BD}{sinβ}$,
∵∠ADC+∠BDC=π,∴sin∠ADC=sin∠BDC,
∵$\frac{AD}{DB}=\frac{1}{3}$,∴$\frac{AC}{BC}=\frac{sinβ}{3sinα}$.
(Ⅱ)∵$α=\frac{π}{6}$,$β=\frac{π}{2}$,
∴$\frac{AC}{BC}=\frac{sinβ}{3sinα}=\frac{2}{3}$,∠ACB=α+β=$\frac{2π}{3}$.
设AC=2k,BC=3k,k>0,由余弦定理得:AB2=AC2+BC2-2AC•BC•cos∠ACB,
即$19=4{k^2}+9{k^2}-2•2k•3k•cos\frac{2π}{3}$,
解得k=1,∴BC=3.

点评 本题考查了正弦定理,余弦定理,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网