题目内容

13.已知数列{an}满足3Sn=(n+2)an(n∈N*),其中Sn为{an}的前n项和,a1=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和为Tn是否存在无限集合M,使得当n∈M时,总有$|{{T_n}-1}|<\frac{1}{10}$成立?若存在,请找出一个这样的集合;若不存在,请说明理由.

分析 (1)由3Sn=(n+2)an得3Sn-1=(n+1)an-1(n≥2),二式相减得3an=(n+2)an-(n+1)an-1f(x)
$\frac{a_n}{{{a_{n-1}}}}=\frac{n+1}{n-1}$(n≥2)叠乘得an=n(n+1);
(2)$\frac{1}{a_n}=\frac{1}{{n({n+1})}}$=$\frac{1}{n}-\frac{1}{n+1}$,${T_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$$+\frac{1}{2}-\frac{1}{4}+…+$$\frac{1}{n}-\frac{1}{n+1}=\frac{n}{n+1}$,
令$|{{T_n}-1}|=|{\frac{n}{n+1}-1}|$=$\frac{1}{n+1}<\frac{1}{10}$得n>9.

解答 解:(1)由3Sn=(n+2)an得3Sn-1=(n+1)an-1(n≥2),
二式相减得3an=(n+2)an-(n+1)an-1f(x)
∴$\frac{a_n}{{{a_{n-1}}}}=\frac{n+1}{n-1}$(n≥2)
∴$\frac{{{a_{n-1}}}}{{{a_{n-2}}}}=\frac{n}{n-2}$;…;$\frac{a_3}{a_2}=\frac{4}{2}$;$\frac{a_2}{a_1}=\frac{3}{1}$;a1=2
叠乘得an=n(n+1);
(2)$\frac{1}{a_n}=\frac{1}{{n({n+1})}}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$$+\frac{1}{2}-\frac{1}{4}+…+$$\frac{1}{n}-\frac{1}{n+1}=\frac{n}{n+1}$,
令$|{{T_n}-1}|=|{\frac{n}{n+1}-1}|$=$\frac{1}{n+1}<\frac{1}{10}$得n>9
故满足条件的M存在,集合M={n|n>9,n∈N*}.

点评 本题考查了数列的递推式,叠乘求通项,裂项求和,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网