题目内容

19.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为$\sqrt{6}-\sqrt{3}$.

分析 作另一焦点F′,连接AF′和BF′和CF′,则四边形FAF′C为平行四边形,进一步得到三角形ABF′为等腰直角三角形,设AF′=AB=x,求出x,在三角形AFF′中由勾股定理得(AF′)2+(AF)2=(2c)2,即可求出e2,则答案可求.

解答 解:作另一焦点F′,连接AF′和BF′和CF′,则四边形FAF′C为平行四边形,
∴AF′=CF=AB,且AF′⊥AB,则三角形ABF′为等腰直角三角形,
设AF′=AB=x,则$x+x+\sqrt{2}x=4a$,即$x=(4-2\sqrt{2})a$,
∴$AF=(2\sqrt{2}-2)a$,在三角形AFF′中由勾股定理得(AF′)2+(AF)2=(2c)2
∴${e}^{2}=9-6\sqrt{2}$.则e=$\sqrt{6}-\sqrt{3}$.
故答案为:$\sqrt{6}-\sqrt{3}$.

点评 本题考查了椭圆的简单性质,考查了勾股定理在解题中的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网