题目内容
10.分析 根据三视图得出空间几何体是镶嵌在正方体中的四棱锥O-ABCD,正方体的棱长为2,A,D为棱的中点,利用球的几何性质求解即可.
解答
解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O-ABCD,正方体的棱长为2,A,D为棱的中点
根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,
设球心到截面BCO的距离为x,则到AD的距离为:2-x,
∴R2=x2+($\sqrt{2}$)2,R2=12+(2-x)2,
解得出:x=$\frac{3}{4}$,R=$\frac{\sqrt{41}}{4}$,
该多面体外接球的表面积为:4πR2=$\frac{41}{4}$π,
故答案为:$\frac{41π}{4}$.
点评 本题综合考查了空间几何体的性质,学生的空间思维能力,构造思想,关键是镶嵌在常见的几何体中解决.
练习册系列答案
相关题目
15.已知动点P位于抛物线y2=4x上,定点An的坐标为($\frac{2}{3}$n,0)(n=1,2,3,4),则|$\overrightarrow{P{A}_{1}}$+$\overrightarrow{P{A}_{2}}$|+|$\overrightarrow{P{A}_{3}}$+$\overrightarrow{P{A}_{4}}$|的最小值为( )
| A. | 4 | B. | $\frac{10}{3}$ | C. | $\frac{20}{3}$ | D. | 2 |
20.已知$\sqrt{3}$sin(π-x)+cos(-x)=$\frac{8}{5}$,则cos(x-$\frac{π}{3}$)=( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{7}{5}$ |