ÌâÄ¿ÄÚÈÝ

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©£¬ÆäÖÐF1£¬F2Ϊ×ó¡¢ÓÒ½¹µã£¬OÎª×ø±êÔ­µã£®Ö±ÏßlÓëÍÖÔ²½»ÓÚP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©Á½¸ö²»Í¬µã£®µ±Ö±Ïßl¹ýÍÖÔ²CÓÒ½¹µãF2ÇÒÇãб½ÇΪ
¦Ð
4
ʱ£¬Ô­µãOµ½Ö±ÏßlµÄ¾àÀëΪ
2
2
£®ÓÖÍÖÔ²Éϵĵ㵽½¹µãF2µÄ×î½ü¾àÀëΪ
3
-1£®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÔOP£¬OQΪÁÚ±ß×öƽÐÐËıßÐÎOQNP£¬µ±Æ½ÐÐËıßÐÎOQNPÃæ»ýΪ
6
ʱ£¬ÇóƽÐÐËıßÐÎOQNPµÄ¶Ô½ÇÏßÖ®»ý|ON|•|PQ|µÄ×î´óÖµ£»
£¨¢ó£©ÈôÅ×ÎïÏßC2£ºy2=2px£¨p£¾0£©ÒÔF2Ϊ½¹µã£¬ÔÚÅ×ÎïÏßC2ÉÏÈÎȡһµãS£¨S²»ÊÇÔ­µãO£©£¬ÒÔOSΪֱ¾¶×÷Ô²£¬½»Å×ÎïÏßC2ÓÚÁíÒ»µãR£¬Çó¸ÃÔ²Ãæ»ý×îСʱµãSµÄ×ø±ê£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ,ÍÖÔ²µÄ±ê×¼·½³Ì
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨I£©Ö±Ïßl¹ýÍÖÔ²CÓÒ½¹µãF2ÇÒÇãб½ÇΪ
¦Ð
4
ʱ£¬¿ÉµÃÖ±ÏßlµÄ·½³ÌΪ£ºy=x-c£®ÓÉÔ­µãOµ½Ö±ÏßlµÄ¾àÀëΪ
2
2
£¬¿ÉµÃ
c
2
=
2
2
£¬½âµÃc£®ÓÖÍÖÔ²Éϵĵ㵽½¹µãF2µÄ×î½ü¾àÀëΪ
3
-1£¬¿ÉµÃa-c=
3
-1£¬½âµÃa£¬b2=a2-c2£®¼´¿ÉµÃ³öÍÖÔ²CµÄ·½³Ì£®
£¨II£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬x1=x2£¬y1=-y2£¬ÓÉ
x
2
1
3
+
y
2
1
2
=1£¬|2x1•2y1|=
6
£¬¿ÉµÃ|ON|•|PQ|=2
6
£®µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨2+3k2£©x2+6kmx+3m2-6=0£¬ÓÉ¡÷£¾0£¬½âµÃ3k2+2£¾m2£®ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ|PQ|=
(1+k2)[(x1+x2)2-4x1x2]
£¬Ô­µãµ½Ö±ÏßlµÄ¾àÀëd=
|m|
1+k2
£¬ÀûÓÃS¡÷POQ=
1
2
d|PQ|
=
6
2
£¬»¯Îª3k2+2=2m2£¬Âú×ã¡÷£¾0£®ÉèM£¨x0£¬y0£©ÎªPQµÄÖе㣬¿ÉµÃ|OM|2=
x
2
0
+
y
2
0
=
1
2
(3-
1
m2
)
£¬|PQ|2=2(2+
1
m2
)
£¬¿ÉµÃ|OM|2|PQ|2=(3-
1
m2
)(2+
1
m2
)
£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
£¨III£©ÓÉÌâÒâ¿ÉµÃÅ×ÎïÏßC2£ºy2=4x£¬ÓÉÒÔOSΪֱ¾¶×÷Ô²£¬½»Å×ÎïÏßC2ÓÚÁíÒ»µãR£¬¿ÉµÃ¡ÏORS=90¡ã£®¿ÉµÃ
OR
SR
=0£®ÉèS£¨x3£¬y3£©£¬R£¨x4£¬y4£©£¬¿ÉµÃy4£¨y4-y3£©=-16£®ÀûÓûù±¾²»µÈʽµÄÐÔÖʿɵÃy3¡Ý8£¬»òy3¡Ü-8£¬x3¡Ý16£®¼´¿ÉµÃ³ö£®
½â´ð£º ½â£º£¨I£©Ö±Ïßl¹ýÍÖÔ²CÓÒ½¹µãF2ÇÒÇãб½ÇΪ
¦Ð
4
ʱ£¬
¡àÖ±ÏßlµÄ·½³ÌΪ£ºy=x-c£®
¡ßÔ­µãOµ½Ö±ÏßlµÄ¾àÀëΪ
2
2
£¬
¡à
c
2
=
2
2
£¬½âµÃc=1£®
ÓÖÍÖÔ²Éϵĵ㵽½¹µãF2µÄ×î½ü¾àÀëΪ
3
-1£¬
¡àa-c=
3
-1£¬½âµÃa=
3
£¬
¡àb2=a2-c2=2£®
¡àÍÖÔ²CµÄ·½³ÌΪ
x2
3
+
y2
2
=1
£®
£¨II£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®
¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬x1=x2£¬y1=-y2£¬
ÓÉ
x
2
1
3
+
y
2
1
2
=1£¬|2x1•2y1|=
6
£¬½âµÃ|x1|=
6
2
£¬|y1|=1£®
¡à|ON|•|PQ|=2
6
£®
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬
ÁªÁ¢
y=kx+m
x2
3
+
y2
2
=1
£¬»¯Îª£¨2+3k2£©x2+6kmx+3m2-6=0£¬
ÓÉ¡÷£¾0£¬½âµÃ3k2+2£¾m2£®
¡àx1+x2=-
6km
2+3k2
£¬x1x2=
3m2-6
2+3k2
£¬
¡à|PQ|=
(1+k2)[(x1+x2)2-4x1x2]
=
2
6
1+k2
3k2+2-m2
2+3k2
£¬
Ô­µãµ½Ö±ÏßlµÄ¾àÀëd=
|m|
1+k2
£¬
¡àS¡÷POQ=
1
2
d|PQ|
=
6
3k2+2-m2
|m|
2+3k2
=
6
2
£¬
»¯Îª3k2+2=2m2£¬Âú×ã¡÷£¾0£®
ÉèM£¨x0£¬y0£©ÎªPQµÄÖе㣬Ôòx0=
x1+x2
2
=-
3k
2m
£¬y0=kx0+m=
1
m
£®
¡à|OM|2=
x
2
0
+
y
2
0
=
9k2
4m2
+
1
m2
=
1
2
(3-
1
m2
)
£¬|PQ|2=2(2+
1
m2
)
£¬
¡à|OM|2|PQ|2=(3-
1
m2
)(2+
1
m2
)
¡Ü
25
4
£¬µ±ÇÒ½öµ±m=¡À
2
ʱȡµÈºÅ£®
¡à|OM||PQ|µÄ×î´óֵΪ
5
2
£®
¡à|ON|•|PQ|=2|OM||PQ|µÄ×î´óֵΪ5£®
×ÛÉϿɵãºON|•|PQ|µÄ×î´óֵΪ5£®
£¨III£©ÓÉÌâÒâ¿ÉµÃÅ×ÎïÏßC2£ºy2=4x£¬
¡ßÒÔOSΪֱ¾¶×÷Ô²£¬½»Å×ÎïÏßC2ÓÚÁíÒ»µãR£¬¡à¡ÏORS=90¡ã£®¡à
OR
SR
=0£®
ÉèS£¨x3£¬y3£©£¬R£¨x4£¬y4£©£¬
Ôò
OR
SR
=x4£¨x4-x3£©+y4£¨y4-y3£©=
y
2
4
(
y
2
4
-
y
2
3
)
16
+y4£¨y4-y3£©=0£®
¡ßy4£¨y4-y3£©¡Ù0£¬¡ày4£¨y4-y3£©=-16£®
¡ày3=
16
y4
+y4
¡Ý8£¬»òy3¡Ü-8
x3¡Ý
y
2
3
4
=16£®
¡à¸ÃÔ²Ãæ»ý×îСʱµãSµÄ×ø±êΪ£¨16£¬¡À8£©£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²ÓëÅ×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°Æä¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø