ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
| ¦Ð |
| 4 |
| ||
| 2 |
| 3 |
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÔOP£¬OQΪÁÚ±ß×öƽÐÐËıßÐÎOQNP£¬µ±Æ½ÐÐËıßÐÎOQNPÃæ»ýΪ
| 6 |
£¨¢ó£©ÈôÅ×ÎïÏßC2£ºy2=2px£¨p£¾0£©ÒÔF2Ϊ½¹µã£¬ÔÚÅ×ÎïÏßC2ÉÏÈÎȡһµãS£¨S²»ÊÇÔµãO£©£¬ÒÔOSΪֱ¾¶×÷Ô²£¬½»Å×ÎïÏßC2ÓÚÁíÒ»µãR£¬Çó¸ÃÔ²Ãæ»ý×îСʱµãSµÄ×ø±ê£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ,ÍÖÔ²µÄ±ê×¼·½³Ì
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨I£©Ö±Ïßl¹ýÍÖÔ²CÓÒ½¹µãF2ÇÒÇãб½ÇΪ
ʱ£¬¿ÉµÃÖ±ÏßlµÄ·½³ÌΪ£ºy=x-c£®ÓÉÔµãOµ½Ö±ÏßlµÄ¾àÀëΪ
£¬¿ÉµÃ
=
£¬½âµÃc£®ÓÖÍÖÔ²Éϵĵ㵽½¹µãF2µÄ×î½ü¾àÀëΪ
-1£¬¿ÉµÃa-c=
-1£¬½âµÃa£¬b2=a2-c2£®¼´¿ÉµÃ³öÍÖÔ²CµÄ·½³Ì£®
£¨II£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬x1=x2£¬y1=-y2£¬ÓÉ
+
=1£¬|2x1•2y1|=
£¬¿ÉµÃ|ON|•|PQ|=2
£®µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨2+3k2£©x2+6kmx+3m2-6=0£¬ÓÉ¡÷£¾0£¬½âµÃ3k2+2£¾m2£®ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ|PQ|=
£¬Ôµãµ½Ö±ÏßlµÄ¾àÀëd=
£¬ÀûÓÃS¡÷POQ=
d|PQ|=
£¬»¯Îª3k2+2=2m2£¬Âú×ã¡÷£¾0£®ÉèM£¨x0£¬y0£©ÎªPQµÄÖе㣬¿ÉµÃ|OM|2=
+
=
(3-
)£¬|PQ|2=2(2+
)£¬¿ÉµÃ|OM|2|PQ|2=(3-
)(2+
)£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
£¨III£©ÓÉÌâÒâ¿ÉµÃÅ×ÎïÏßC2£ºy2=4x£¬ÓÉÒÔOSΪֱ¾¶×÷Ô²£¬½»Å×ÎïÏßC2ÓÚÁíÒ»µãR£¬¿ÉµÃ¡ÏORS=90¡ã£®¿ÉµÃ
•
=0£®ÉèS£¨x3£¬y3£©£¬R£¨x4£¬y4£©£¬¿ÉµÃy4£¨y4-y3£©=-16£®ÀûÓûù±¾²»µÈʽµÄÐÔÖʿɵÃy3¡Ý8£¬»òy3¡Ü-8£¬x3¡Ý16£®¼´¿ÉµÃ³ö£®
| ¦Ð |
| 4 |
| ||
| 2 |
| c | ||
|
| ||
| 2 |
| 3 |
| 3 |
£¨II£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬x1=x2£¬y1=-y2£¬ÓÉ
| ||
| 3 |
| ||
| 2 |
| 6 |
| 6 |
| (1+k2)[(x1+x2)2-4x1x2] |
| |m| | ||
|
| 1 |
| 2 |
| ||
| 2 |
| x | 2 0 |
| y | 2 0 |
| 1 |
| 2 |
| 1 |
| m2 |
| 1 |
| m2 |
| 1 |
| m2 |
| 1 |
| m2 |
£¨III£©ÓÉÌâÒâ¿ÉµÃÅ×ÎïÏßC2£ºy2=4x£¬ÓÉÒÔOSΪֱ¾¶×÷Ô²£¬½»Å×ÎïÏßC2ÓÚÁíÒ»µãR£¬¿ÉµÃ¡ÏORS=90¡ã£®¿ÉµÃ
| OR |
| SR |
½â´ð£º
½â£º£¨I£©Ö±Ïßl¹ýÍÖÔ²CÓÒ½¹µãF2ÇÒÇãб½ÇΪ
ʱ£¬
¡àÖ±ÏßlµÄ·½³ÌΪ£ºy=x-c£®
¡ßÔµãOµ½Ö±ÏßlµÄ¾àÀëΪ
£¬
¡à
=
£¬½âµÃc=1£®
ÓÖÍÖÔ²Éϵĵ㵽½¹µãF2µÄ×î½ü¾àÀëΪ
-1£¬
¡àa-c=
-1£¬½âµÃa=
£¬
¡àb2=a2-c2=2£®
¡àÍÖÔ²CµÄ·½³ÌΪ
+
=1£®
£¨II£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®
¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬x1=x2£¬y1=-y2£¬
ÓÉ
+
=1£¬|2x1•2y1|=
£¬½âµÃ|x1|=
£¬|y1|=1£®
¡à|ON|•|PQ|=2
£®
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬
ÁªÁ¢
£¬»¯Îª£¨2+3k2£©x2+6kmx+3m2-6=0£¬
ÓÉ¡÷£¾0£¬½âµÃ3k2+2£¾m2£®
¡àx1+x2=-
£¬x1x2=
£¬
¡à|PQ|=
=
£¬
Ե㵽ֱÏßlµÄ¾àÀëd=
£¬
¡àS¡÷POQ=
d|PQ|=
=
£¬
»¯Îª3k2+2=2m2£¬Âú×ã¡÷£¾0£®
ÉèM£¨x0£¬y0£©ÎªPQµÄÖе㣬Ôòx0=
=-
£¬y0=kx0+m=
£®
¡à|OM|2=
+
=
+
=
(3-
)£¬|PQ|2=2(2+
)£¬
¡à|OM|2|PQ|2=(3-
)(2+
)¡Ü
£¬µ±ÇÒ½öµ±m=¡À
ʱȡµÈºÅ£®
¡à|OM||PQ|µÄ×î´óֵΪ
£®
¡à|ON|•|PQ|=2|OM||PQ|µÄ×î´óֵΪ5£®
×ÛÉϿɵãºON|•|PQ|µÄ×î´óֵΪ5£®
£¨III£©ÓÉÌâÒâ¿ÉµÃÅ×ÎïÏßC2£ºy2=4x£¬
¡ßÒÔOSΪֱ¾¶×÷Ô²£¬½»Å×ÎïÏßC2ÓÚÁíÒ»µãR£¬¡à¡ÏORS=90¡ã£®¡à
•
=0£®
ÉèS£¨x3£¬y3£©£¬R£¨x4£¬y4£©£¬
Ôò
•
=x4£¨x4-x3£©+y4£¨y4-y3£©=
+y4£¨y4-y3£©=0£®
¡ßy4£¨y4-y3£©¡Ù0£¬¡ày4£¨y4-y3£©=-16£®
¡ày3=
+y4¡Ý8£¬»òy3¡Ü-8
x3¡Ý
=16£®
¡à¸ÃÔ²Ãæ»ý×îСʱµãSµÄ×ø±êΪ£¨16£¬¡À8£©£®
| ¦Ð |
| 4 |
¡àÖ±ÏßlµÄ·½³ÌΪ£ºy=x-c£®
¡ßÔµãOµ½Ö±ÏßlµÄ¾àÀëΪ
| ||
| 2 |
¡à
| c | ||
|
| ||
| 2 |
ÓÖÍÖÔ²Éϵĵ㵽½¹µãF2µÄ×î½ü¾àÀëΪ
| 3 |
¡àa-c=
| 3 |
| 3 |
¡àb2=a2-c2=2£®
¡àÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 3 |
| y2 |
| 2 |
£¨II£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®
¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬x1=x2£¬y1=-y2£¬
ÓÉ
| ||
| 3 |
| ||
| 2 |
| 6 |
| ||
| 2 |
¡à|ON|•|PQ|=2
| 6 |
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬
ÁªÁ¢
|
ÓÉ¡÷£¾0£¬½âµÃ3k2+2£¾m2£®
¡àx1+x2=-
| 6km |
| 2+3k2 |
| 3m2-6 |
| 2+3k2 |
¡à|PQ|=
| (1+k2)[(x1+x2)2-4x1x2] |
2
| ||||||
| 2+3k2 |
Ե㵽ֱÏßlµÄ¾àÀëd=
| |m| | ||
|
¡àS¡÷POQ=
| 1 |
| 2 |
| ||||
| 2+3k2 |
| ||
| 2 |
»¯Îª3k2+2=2m2£¬Âú×ã¡÷£¾0£®
ÉèM£¨x0£¬y0£©ÎªPQµÄÖе㣬Ôòx0=
| x1+x2 |
| 2 |
| 3k |
| 2m |
| 1 |
| m |
¡à|OM|2=
| x | 2 0 |
| y | 2 0 |
| 9k2 |
| 4m2 |
| 1 |
| m2 |
| 1 |
| 2 |
| 1 |
| m2 |
| 1 |
| m2 |
¡à|OM|2|PQ|2=(3-
| 1 |
| m2 |
| 1 |
| m2 |
| 25 |
| 4 |
| 2 |
¡à|OM||PQ|µÄ×î´óֵΪ
| 5 |
| 2 |
¡à|ON|•|PQ|=2|OM||PQ|µÄ×î´óֵΪ5£®
×ÛÉϿɵãºON|•|PQ|µÄ×î´óֵΪ5£®
£¨III£©ÓÉÌâÒâ¿ÉµÃÅ×ÎïÏßC2£ºy2=4x£¬
¡ßÒÔOSΪֱ¾¶×÷Ô²£¬½»Å×ÎïÏßC2ÓÚÁíÒ»µãR£¬¡à¡ÏORS=90¡ã£®¡à
| OR |
| SR |
ÉèS£¨x3£¬y3£©£¬R£¨x4£¬y4£©£¬
Ôò
| OR |
| SR |
| ||||||
| 16 |
¡ßy4£¨y4-y3£©¡Ù0£¬¡ày4£¨y4-y3£©=-16£®
¡ày3=
| 16 |
| y4 |
x3¡Ý
| ||
| 4 |
¡à¸ÃÔ²Ãæ»ý×îСʱµãSµÄ×ø±êΪ£¨16£¬¡À8£©£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²ÓëÅ×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°Æä¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÉèµãPÔÚÇúÏßy=x2ÉÏ£¬µãQÔÚÖ±Ïßy=2x-2ÉÏ£¬ÔòPQµÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|
ÏòÁ¿
£¬
£¬Âú×ã|
|=4£¬|
|=2£¬ÇÒ£¨
-
£©•
=0£¬Ôò
Óë
µÄ¼Ð½Ç£¨¡¡¡¡£©
| a |
| b |
| a |
| b |
| a |
| b |
| b |
| a |
| b |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|