题目内容

19.已知tanx+tany=5m,tan(x+y)=6m,(m≠0),tan(x-y)=$\frac{1}{7}$,求m的值及tanx、tany.

分析 直接利用两角和与差的正切函数化简求解即可得到tanx、tany,然后求出m的值.

解答 解:tan(x+y)=$\frac{tanx+tany}{1-tanxtany}$=6m,
tanx+tany=5m代入上式 tanxtany=$\frac{1}{6}$,
tan(x-y)=$\frac{tanx-tany}{1+tanxtany}$=$\frac{1}{7}$,tanx-tany=$\frac{1}{6}$,
tanx=$\frac{1}{2}$,tany=$\frac{1}{3}$,或tanx=-$\frac{1}{3}$,tany=-$\frac{1}{2}$;
tanx=$\frac{1}{2}$,tany=$\frac{1}{3}$时,m=$\frac{1}{6}$,
tanx=-$\frac{1}{3}$,tany=-$\frac{1}{2}$时,m=-$\frac{1}{6}$.

点评 本题考查两角和与差的正切函数的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网