ÌâÄ¿ÄÚÈÝ

13£®ÒÔÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬ÒÔÆäËĸö¶¥µãΪ¶¥µãµÄËıßÐεÄÃæ»ýµÈÓÚ2$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©¹ýÔ­µãÇÒбÂʲ»Îª0µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚP£¬QÁ½µã£¬AÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬Ö±ÏßAP£¬AQ·Ö±ðÓëyÖá½»ÓÚµãM£¬N£¬ÎÊ£ºÒÔMNΪֱ¾¶µÄÔ²ÊÇ·ñºã¹ýxÖáÉϵ͍µã£¿Èôºã¹ýxÖáÉϵ͍µã£¬ÇëÇó³ö¸Ã¶¨µãµÄ×ø±ê£»Èô²»ºã¹ýxÖáÉϵ͍µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ ab=\sqrt{3}\end{array}\right.$£¬´Ó¶ø½âµÃÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Ò×Öª$A£¨\sqrt{3}£¬0£©$£¬ÉèM£¨0£¬m£©£¬N£¨0£¬n£©£¬P£¨x0£¬y0£©£¬´Ó¶ø¿ÉµÃ$\frac{{{x_0}^2}}{3}+{y_0}^2=1$£¬ÇÒQ£¨-x0£¬-y0£©£¬$\overrightarrow{AP}=£¨{x_0}-\sqrt{3}£¬{y_0}£©$£¬$\overrightarrow{AM}$=£¨-$\sqrt{3}$£¬m£©£¬´Ó¶ø»¯¼ò¿ÉµÃ$m=\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}$£¬$n=\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}$£®¼ÙÉè´æÔÚÂú×ãÌâÒâµÄxÖáÉϵ͍µãR£¨t£¬0£©»¯¼ò¿ÉµÃt2=-$\frac{3{{y}_{0}}^{2}}{{{x}_{0}}^{2}-3}$£¬ÔÙ½áºÏ3${{y}_{0}}^{2}$=3-${{x}_{0}}^{2}$½âµÃ£®

½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒ⣬µÃ$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ ab=\sqrt{3}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}a=\sqrt{3}\\ b=1\end{array}\right.$¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{x^2}{3}+{y^2}=1$£®
£¨¢ò£©$A£¨\sqrt{3}£¬0£©$£¬ÉèM£¨0£¬m£©£¬N£¨0£¬n£©£¬P£¨x0£¬y0£©£¬
ÔòÓÉÌâÒ⣬¿ÉµÃ$\frac{{{x_0}^2}}{3}+{y_0}^2=1$£¬
ÇÒQ£¨-x0£¬-y0£©£¬$\overrightarrow{AP}=£¨{x_0}-\sqrt{3}£¬{y_0}£©$£¬$\overrightarrow{AM}$=£¨-$\sqrt{3}$£¬m£©£¬
ÒòΪA£¬P£¬MÈýµã¹²Ïߣ¬ËùÒÔ$\overrightarrow{AP}¡Î\overrightarrow{AM}$£¬
¹ÊÓÐ$£¨{x_0}-\sqrt{3}£©m=-\sqrt{3}{y_0}$£¬½âµÃ$m=\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}$£®
ͬÀí£¬¿ÉµÃ$n=\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}$£®
¼ÙÉè´æÔÚÂú×ãÌâÒâµÄxÖáÉϵ͍µãR£¨t£¬0£©£¬ÔòÓÐ$\overrightarrow{RM}¡Í\overrightarrow{RN}$£¬¼´$\overrightarrow{RM}•\overrightarrow{RN}=0$£®
ÒòΪ$\overrightarrow{RM}=£¨-t£¬m£©$£¬$\overrightarrow{RN}=£¨-t£¬n£©$£¬
ËùÒÔt2+mn=0£¬¼´${t^2}+\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}¡Á\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}=0$£¬
ÕûÀíµÃ£¬t2=-$\frac{3{{y}_{0}}^{2}}{{{x}_{0}}^{2}-3}$£¬
ÓÖ¡ß3${{y}_{0}}^{2}$=3-${{x}_{0}}^{2}$£¬¡àt2=1£¬
½âµÃt=1»òt=-1£®
¹ÊÒÔMNΪֱ¾¶µÄÔ²ºã¹ýxÖáÉϵ͍µã£¨-1£¬0£©£¬£¨1£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµµÄÅжÏÓëÓ¦Óã¬Í¬Ê±¿¼²éÁËÊýÐνáºÏµÄ˼Ï뼰ѧÉúµÄ»¯¼òÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø