题目内容
19.已知定义在R上的偶函数f(x)满足:当x∈[0,+∞)时,$f(x)=\left\{{\begin{array}{l}{2-x,x≥2}\\{{x^2}+1,0≤x<2}\end{array}}\right.$,则f[f(-2)]的值为( )| A. | 1 | B. | 3 | C. | -2 | D. | -3 |
分析 由已知利用偶函数的性质得f(x)=$\left\{\begin{array}{l}{2+x,x≤-2}\\{{x}^{2}+1,-2<x≤0}\end{array}\right.$,从而f(-2)=2-2=0,进而f[f(-2)]=f(0),由此能求出结果.
解答 解:∵定义在R上的偶函数f(x)满足:当x∈[0,+∞)时,
$f(x)=\left\{{\begin{array}{l}{2-x,x≥2}\\{{x^2}+1,0≤x<2}\end{array}}\right.$,
∴f(x)=$\left\{\begin{array}{l}{2+x,x≤-2}\\{{x}^{2}+1,-2<x≤0}\end{array}\right.$,
∴f(-2)=2-2=0,
f[f(-2)]=f(0)=0+1=1.
故选:A.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
6.已知点P是△ABC所在平面内一点,且$\overrightarrow{PA}$=-2$\overrightarrow{PB}$,在△ABC内任取一点Q,则Q落在△APC内的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
7.已知i是虚数单位,若$\frac{3i}{z}$=-1+2i,则z的共轭复数$\overline{z}$等于( )
| A. | $\frac{2}{3}$+$\frac{1}{3}$i | B. | $\frac{2}{3}$-$\frac{1}{3}$i | C. | $\frac{6}{5}$+$\frac{3}{5}$i | D. | $\frac{6}{5}$-$\frac{3}{5}$i |
14.已知动点P(x,y)满足$\sqrt{{x}^{2}+(y+3)^{2}}$+$\sqrt{{x}^{2}+(y-3)^{2}}$=6,则动点P的轨迹是( )
| A. | 双曲线 | B. | 线段 | C. | 抛物线 | D. | 椭圆 |
4.函数f(x)=2x2+3x+1的零点是( )
| A. | -$\frac{1}{2}$,-1 | B. | $\frac{1}{2}$,1 | C. | $\frac{1}{2}$,-1 | D. | -$\frac{1}{2}$,1 |
9.函数f(x)=-x3+ax2-x-1在R上是单调函数,则实数a的取值范围是( )
| A. | $({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$ | B. | $({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$ | C. | $[{-\sqrt{3},\sqrt{3}}]$ | D. | $({-\sqrt{3},\sqrt{3}})$ |