ÌâÄ¿ÄÚÈÝ
1£®Ä³µ¥Î»ÐèÒª´Ó¼×¡¢ÒÒ2ÈËÖÐÑ¡°ÎÒ»È˲μÓиÚλÅàѵ£¬Ìرð×éÖ¯ÁË5¸öרÏîµÄ¿¼ÊÔ£¬³É¼¨Í³¼ÆÈçÏ£º| µÚÒ»Ïî | µÚ¶þÏî | µÚÈýÏî | µÚËÄÏî | µÚÎåÏî | |
| ¼×µÄ³É¼¨ | 81 | 82 | 79 | 96 | 87 |
| Òҵijɼ¨ | 94 | 76 | 80 | 90 | 85 |
£¨2£©¸ù¾ÝÓйظÅÂÊ֪ʶ£¬½â´ðÒÔÏÂÎÊÌ⣺
´Ó¼×¡¢ÒÒ2È˵ijɼ¨Öи÷Ëæ»ú³éȡһ¸ö£¬Éè³éµ½¼×µÄ³É¼¨Îªx£¬³éµ½Òҵijɼ¨Îªy£®ÓÃA±íʾÂú×ãÌõ¼þ|x-y|¡Ü2µÄʼþ£¬ÇóʼþAµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©·Ö±ðÇó³ö¼×¡¢Ò񵀮½¾ù³É¼¨ºÍ³É¼¨µÄ·½²î£¬ÓɶþÕ߯½¾ùÊýÏàͬ£¬¼×µÄ·½²îС£¬µÃµ½Ñ¡¼×²Î¼ÓиÚλÅàѵ£®
£¨2£©´Ó¼×¡¢ÒÒ2È˵ijɼ¨Öи÷Ëæ»ú³éȡһ¸ö£¬Éè³éµ½¼×µÄ³É¼¨Îªx£¬Éè³éÈ¡Òҵijɼ¨Îªy£¬ÀûÓÃÁоٷ¨Çó³öËùÓеģ¨x£¬y£©¹²ÓÐ25¸ö£¬ÆäÖÐÂú×ãÌõ¼þ|x-y|¡Ü2µÄÓÐ5¸ö£¬ÓÉ´ËÄÜÇó³ö|x-y|¡Ü2µÄʼþµÄ¸ÅÂÊ£®
½â´ð ½â£º£¨1£©¼×µÄƽ¾ù³É¼¨Îª$\overline{{x}_{¼×}}$=$\frac{81+82+79+96+87}{5}$=85£¬
Ò񵀮½¾ù³É¼¨Îª$\overline{{x}_{ÒÒ}}$=$\frac{94+76+80+90+85}{5}$=85£¬
¼×µÄ³É¼¨µÄ·½²îΪ£º${{S}_{¼×}}^{2}$=$\frac{1}{5}$[£¨81-85£©2+£¨82-85£©2+£¨79-85£©2+£¨96-85£©2+£¨87-85£©2]=37.2£®
Òҵijɼ¨µÄ·½²îΪ£º${{S}_{ÒÒ}}^{2}$=$\frac{1}{5}$[£¨94-85£©2+£¨76-85£©2+£¨80-85£©2+£¨90-85£©2+£¨85-85£©2]=42.4£®
¡ß¶þÕ߯½¾ùÊýÏàͬ£¬¼×µÄ·½²îС£¬¡àÑ¡¼×²Î¼ÓиÚλÅàѵ£®
£¨2£©´Ó¼×¡¢ÒÒ2È˵ijɼ¨Öи÷Ëæ»ú³éȡһ¸ö£¬Éè³éµ½¼×µÄ³É¼¨Îªx£¬Éè³éÈ¡Òҵijɼ¨Îªy£¬
ÔòËùÓеģ¨x£¬y£©¹²ÓÐ25¸ö£¬·Ö±ðΪ£º
£¨81£¬94£©£¬£¨81£¬76£©£¬£¨81£¬80£©£¬£¨81£¬90£©£¬£¨81£¬85£©£¬
£¨82£¬94£©£¬£¨82£¬76£©£¬£¨82£¬80£©£¬£¨82£¬90£©£¬£¨82£¬85£©£¬
£¨79£¬94£©£¬£¨79£¬76£©£¬£¨79£¬80£©£¬£¨79£¬90£©£¬£¨79£¬85£©£¬
£¨96£¬94£©£¬£¨96£¬76£©£¬£¨96£¬80£©£¬£¨96£¬90£©£¬£¨96£¬85£©£¬
£¨87£¬94£©£¬£¨87£¬76£©£¬£¨87£¬80£©£¬£¨87£¬90£©£¬£¨87£¬85£©£¬
ÆäÖÐÂú×ãÌõ¼þ|x-y|¡Ü2µÄÓÐ5¸ö£¬·Ö±ðΪ£º
£¨81£¬80£©£¬£¨82£¬80£©£¬£¨79£¬80£©£¬£¨96£¬94£©£¬£¨87£¬85£©£¬
ÓÃA±íʾÂú×ãÌõ¼þ|x-y|¡Ü2µÄʼþ£¬ÔòʼþAµÄ¸ÅÂÊ£º
P£¨A£©=$\frac{5}{25}=\frac{1}{5}$£®
µãÆÀ ±¾Ì⿼²éƽ¾ùÊý¡¢·½²îµÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬¿¼²éƽ¾ùÊý¡¢·½²î¡¢¸ÅÂÊ¡¢Áоٷ¨µÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÊÇ»ù´¡Ì⣮
| A£® | b£¼a£¼c | B£® | a£¼b£¼c | C£® | c£¼b£¼a | D£® | c£¼a£¼b |
| A£® | £¨0£¬+¡Þ£© | B£® | £¨-1£¬+¡Þ£© | C£® | £¨1£¬+¡Þ£© | D£® | [-1£¬+¡Þ£© |
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
£¨2£©ÒÑÖª¸Ã³§¼¼¸Äǰ100¶Ö¼×²úÆ·µÄÉú²úÄܺÄΪ90¶Ö±ê׼ú£¬ÊÔ¸ù¾Ý£¨1£©Çó³öµÄÏßÐԻع鷽³Ì£¬Ô¤²âÉú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺıȼ¼¸Äǰ½µµÍ¶àÉÙ¶Ö±ê׼ú£¿
²Î¿¼¹«Ê½£»$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}}\\{\widehat{a}=\widehat{y}-\widehat{b}\overline{x}}\end{array}\right.$£®
| ÔÁÏ | ÿÖÖ²úÆ·ËùÐèÔÁÏ£¨t£© | ÏÖÓÐÔ ÁÏÊý£¨t£© | |
| A | B | ||
| ¼× | 2 | 1 | 14 |
| ÒÒ | 1 | 3 | 18 |
| ÀûÈó£¨ÍòÔª/t£© | 5 | 3 | - |
£¨2£©Ã¿¶ÖB²úÆ·µÄÀûÈóÔÚʲô·¶Î§±ä»¯Ê±£¬Ô×îÓŽⲻ±ä£¿µ±³¬³öÕâ¸ö·¶Î§Ê±£¬×îÓŽâÓкα仯£¿
| A£® | 3+2i | B£® | 2-3i | C£® | 3-2i | D£® | 2+3i |
| A£® | {1£¬2} | B£® | {2£¬3} | C£® | {1£¬2£¬3} | D£® | {-1£¬1£¬2£¬3} |