题目内容

在数列{an}中,若a1=2,a2=6,且当n∈N*时,an+2是an•an+1的个位数字,则a2014等于(  )
A、2B、4C、6D、8
考点:归纳推理
专题:归纳法
分析:通过计算:a3,a4,a5,a6,a7,a8,….由以上观察到:an+6=an.即可得出.
解答: 解:①∵a1a2=2×6=12,其个位数是2,∴a3=2;
②∵a2a3=2×6=12,其个位数是2,∴a4=2;
③∵a3a4=2×2=4,其个位数是4,∴a5=4;
④∵a4a5=2×4=8,其个位数是8,∴a6=8;
⑤∵a5a6=4×8=32,其个位数是2,∴a7=2;
⑥∵a6a7=2×8=16,其个位数是6,∴a8=6;
….
由以上观察到:an+6=an
∴a2014=a6×335+4=a4=2.
∴a2014=2.
故选:A.
点评:本题考查了利用“归纳法”求数列的通项公式,考查了推理能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网