题目内容
已知曲线C1:
(
为参数),曲线C2:
(t为参数).
(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;
(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线
.写出
的参数方程.
与
公共点的个数和C
公共点的个数是否相同?说明你的理由.
(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;
(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线
(1)
的普通方程为
,
的普通方程为
,所以
与
只有一个公共点;(2)压缩后的直线
与椭圆
仍然只有一个公共点,和
与
公共点个数相同.
试题分析:本题主要考查参数方程与普通方程的互化、直线与圆的位置关系、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用参数方程中参数将参数方程转化成普通方程,判断图形形状,再利用圆心到直线的距离与半径的关系判断直线与圆的位置关系;第二问,先将原
试题解析:(1)
因为圆心
所以
(2)压缩后的参数方程分别为
化为普通方程为:
联立消元得
其判别式
所以压缩后的直线
练习册系列答案
相关题目