题目内容
10.(1)求函数f(x)=3tan($\frac{π}{6}$-$\frac{x}{4}$)的周期和单调递减区间;(2)试比较f(π)与f($\frac{3π}{2}$)的大小.
分析 (1)利用正切函数的性质求解即可.
(2)根据正切函数的单调性求解可判断大小.
解答 解:(1)函数f(x)=3tan($\frac{π}{6}$-$\frac{x}{4}$)=-tan($\frac{x}{4}-\frac{π}{6}$),
其周期T=$\frac{π}{|ω|}=\frac{π}{\frac{1}{4}}=4π$
由$kπ-\frac{π}{2}<$$\frac{x}{4}$-$\frac{π}{6}$$<kπ+\frac{π}{2}$,
解得:$4kπ-\frac{4π}{3}$<x<$4kπ+\frac{8π}{3}$.k∈Z
∴f(x)=3tan($\frac{π}{6}$-$\frac{x}{4}$)单调递减区间为:($4kπ-\frac{4π}{3}$,$4kπ+\frac{8π}{3}$).k∈Z.
(2)f(π)=3tan($\frac{π}{6}$-$\frac{π}{4}$)=-3tan$\frac{π}{12}$
f($\frac{3π}{2}$)=3tan($\frac{π}{6}$-$\frac{3π}{8}$)=-tan$\frac{5π}{24}$,
∵$\frac{5π}{24}>\frac{2π}{24}$>0
∴-3tan$\frac{π}{12}$>-tan$\frac{5π}{24}$,
即f(π)>f($\frac{3π}{2}$).
点评 本题考查了正切函数的性质及其运用.属于基础题.
练习册系列答案
相关题目
20.已知函数f(x)=[x]的函数值表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2,且集合A={x∈N*|2x≤x2},B={y|y=f(x),x∈[-1,1)},则可建立从集合A到集合B的映射个数为( )
| A. | 4 | B. | 8 | C. | 16 | D. | 32 |
18.现要制作一个圆锥形漏斗,其母线长为t,要使其体积最大,其高为( )
| A. | .$\frac{1}{3}{t^2}$ | B. | $\frac{{\sqrt{3}}}{3}t$. | C. | .$\frac{{\sqrt{2}}}{3}t$. | D. | .$\frac{1}{2}t$ |