题目内容

10.(1)求函数f(x)=3tan($\frac{π}{6}$-$\frac{x}{4}$)的周期和单调递减区间;
(2)试比较f(π)与f($\frac{3π}{2}$)的大小.

分析 (1)利用正切函数的性质求解即可.
(2)根据正切函数的单调性求解可判断大小.

解答 解:(1)函数f(x)=3tan($\frac{π}{6}$-$\frac{x}{4}$)=-tan($\frac{x}{4}-\frac{π}{6}$),
其周期T=$\frac{π}{|ω|}=\frac{π}{\frac{1}{4}}=4π$
由$kπ-\frac{π}{2}<$$\frac{x}{4}$-$\frac{π}{6}$$<kπ+\frac{π}{2}$,
解得:$4kπ-\frac{4π}{3}$<x<$4kπ+\frac{8π}{3}$.k∈Z
∴f(x)=3tan($\frac{π}{6}$-$\frac{x}{4}$)单调递减区间为:($4kπ-\frac{4π}{3}$,$4kπ+\frac{8π}{3}$).k∈Z.
(2)f(π)=3tan($\frac{π}{6}$-$\frac{π}{4}$)=-3tan$\frac{π}{12}$
f($\frac{3π}{2}$)=3tan($\frac{π}{6}$-$\frac{3π}{8}$)=-tan$\frac{5π}{24}$,
∵$\frac{5π}{24}>\frac{2π}{24}$>0
∴-3tan$\frac{π}{12}$>-tan$\frac{5π}{24}$,
即f(π)>f($\frac{3π}{2}$).

点评 本题考查了正切函数的性质及其运用.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网