题目内容

1.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若$c=\sqrt{7}$,△ABC的周长为$5+\sqrt{7}$,求△ABC的面积S.

分析 (1)由正弦定理,三角形内角和定理化简已知等式可得2cosCsinC=sinC,结合sinC≠0,可求$cosC=\frac{1}{2}$,结合范围C∈(0,π),可求C的值.
(2)由已知可求a+b=5,利用余弦定理可求ab=6,进而利用三角形面积公式即可计算得解.

解答 解:(1)由正弦定理得:2cosC(sinAcosB+sinBcosA)=sinC,
即2cosCsin(A+B)=sinC,
∴2cosCsinC=sinC,
故$cosC=\frac{1}{2}$,
又C∈(0,π),
∴$C=\frac{π}{3}$.
(2)∵$a+b+c=5+\sqrt{7}$且$c=\sqrt{7}$,
∴a+b=5,
∵由余弦定理得:a2+b2-2abcosC=7,
∴ab=6,
∴${S_{△ABC}}=\frac{1}{2}absinC=\frac{{3\sqrt{3}}}{2}$.

点评 本题主要考查了正弦定理,三角形内角和定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网