题目内容
20.在四面体ABCD中,AB=CD=$2\sqrt{2}$,AD=BD=3,AC=BC=4,点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是2.分析 由直线AB平行于平面EFGH,且平面ABC交平面EFGH于HG,所以HG∥AB,同理EF∥AB,FG∥CD,EH∥CD,所以FG∥EH,EF∥HG.四边形EFGH为平行四边形.又AD=BD,AC=BC的对称性,可知AB⊥CD.
所以:四边形EFGH为矩形.建立二次函数关系求解四边形EFGH面积的最大值.
解答 解:∵直线AB平行于平面EFGH,且平面ABC交平面EFGH于HG,∴HG∥AB;![]()
同理:EF∥AB,FG∥CD,EH∥CD,所以:FG∥EH,EF∥HG.
故:四边形EFGH为平行四边形.
又∵AD=BD,AC=BC的对称性,可知AB⊥CD.
所以:四边形EFGH为矩形.
设BF:BD=BG:BC=FG:CD=x,(0≤x≤1)
FG=2$\sqrt{2}$x,HG=2$\sqrt{2}$(1-x)
SEFGH=FG×HG=8x(1-x)=-8(x-$\frac{1}{2}$)2+2,
根据二次函数的性质可知:SEFGH面积的最大值2.
故答案为2.
点评 本题考查了四面体ABCD中的对称性来证明四边形是矩形.同时考查了动点的问题以及灵活性的运用.属于难题.
练习册系列答案
相关题目
8.已知函数f(x)=x5+2x4+x3-x2+3x-5,用秦九韶算法计算,当x=5时,V3=( )
| A. | 27 | B. | 36 | C. | 54 | D. | 179 |
15.
如图,多面体OABCD,AB=CD=2,AD=BC=$2\sqrt{3}$,AC=BD=$\sqrt{10}$,且OA,OB,OC两两垂直,则下列说法正确的是( )
| A. | 直线OB∥平面ACD | |
| B. | 球面经过点A、B、C、D四点的球的直径是$\sqrt{13}$ | |
| C. | 直线AD与OB所成角是45° | |
| D. | 二面角A-OC-D等于30° |
12.甲乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加不同小组的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{5}{6}$ |