题目内容

某人计划年初向银行贷款m万元用于买房.他选择10年期贷款,偿还贷款的方式为:分10次等额归还,每年一次,并从借后次年年初开始归还,若10年期贷款的年利率为r,且每年利息均按复利计算(即本年的利息计入次年的本金生息),则每年应还款金额为(  )元.
A、
m•104•r
(1+r)9-1
B、
m•104•r
(1+r)10-(1+r)
C、
m•104•r•(1+r)9
(1+r)9-1
D、
m•104•r•(1+r)10
(1+r)10-1
考点:等比数列的前n项和
专题:等差数列与等比数列
分析:设出每年应还款的数额,分别求出该人10年还款的现金与利息和以及银行贷款a元10年后的本利和,列等式后求得每年应还款数.
解答: 解:设每年应还x万元,还款10次,
则该人10年还款的现金与利息和为x[1+(1+r)+(1+r)2+…+(1+r)9],
银行贷款m元10年后的本利和为m(1+r)10
∴x[1+(1+r)+(1+r)2+…+(1+r)9]=m(1+r)10
x•
1-(1+r)10
1-(1+r)
=m(1+r)10
即x=
mr(1+r)10
(1+r)10-1
(万元),
即每年应还款金额为
m•104•r•(1+r)10
(1+r)10-1
元,
故选:D.
点评:本题考查了函数模型的选择及应用,考查了简单的数学建模思想方法,关键是列出贷款和还款本息的等式,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网