ÌâÄ¿ÄÚÈÝ

¹ýÅ×ÎïÏßy2=2pxµÄ½¹µãFµÄÒ»ÌõÖ±ÏßÓëËü½»ÓÚÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÒÖ±ÏßABµÄÇãб½ÇΪ¦Á£¬ÔòÒÔÏÂÕýÈ·µÄÓУº
 
£®
£¨1£©y1y2=-p2£¬x1x2=
p2
4
£»
£¨2£©|AB|=x1+x2+p£»
£¨3£©S¡÷AOB=
2¦Ñ
sin2¦Á
£»
£¨4£©|AF|=
p
1-cos¦Á

£¨5£©
1
|AF|
+
1
|BF|
=
2
p

£¨6£©|BF|=
p
1+cos¦Á
£»
£¨7£©ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßµÄ×¼ÏßÏཻ£®
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ,Å×ÎïÏߵļòµ¥ÐÔÖÊ
רÌ⣺ÔĶÁÐÍ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÉèAB£ºx=
p
2
»òy=k£¨x-
p
2
£©£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬¼´¿ÉµÃµ½£»
£¨2£©ÓÉÅ×ÎïÏߵ͍Òå¿ÉµÃ£»
ÓÉÅ×ÎïÏߵ͍Òå¿ÉµÃBF=BD=p+BFcos¦Á£¬Ôò|BF|=
P
1-cos¦Á
£¬Í¬Àí¿ÉµÃ|AF|=
p
1+cos¦Á
£¬¿ÉÅжϣ¨4£©¡¢£¨5£©¡¢£¨6£©£»
£¨3£©S¡÷AOB=
1
2
¡Á
p
2
¡Á£¨BFsin¦Á+AFsin¦Á£©£¬´úÈëAF£¬BF¼´¿ÉµÃµ½£»
£¨7£©ÓÉÓÚABµÄÖе㵽׼ÏߵľàÀëµÈÓÚACÓëBDµÄºÍµÄÒ»°ë£¬ÓÉÅ×ÎïÏߵ͍Ò壬¼´¿ÉÅжϣ®
½â´ð£º ½â£º£¨1£©ÉèAB£ºx=
p
2
»òy=k£¨x-
p
2
£©£¬Èôx=
p
2
£¬
Ôòy2=p2£¬y1y2=-p2£¬x1x2=
p2
4
£¬
ÓÉy=k£¨x-
p
2
£©ºÍÅ×ÎïÏß·½³Ì£¬µÃµ½k2x2-£¨kp+2p£©x+
k2p2
4
=0£¬
Ôòx1x2=
p2
4
£¬y1y2=-
4p2
p2
4
=-p2£®¹Ê£¨1£©¶Ô£»
£¨2£©ÓÉÅ×ÎïÏߵ͍Òå¿ÉµÃ£¬|AB|=|AF|+|BF|=x1+x2+p£¬¹Ê£¨2£©¶Ô£»
£¨3£©S¡÷AOB=
1
2
¡Á
p
2
¡Á£¨BFsin¦Á+AFsin¦Á£©=
psin¦Á
4
£¨
P
1-cos¦Á
+
p
1+cos¦Á
£©=
2p
sin2¦Á
psin¦Á
4
=
p2
2sin¦Á
£¬¹Ê£¨3£©´í£»
ÓÉÅ×ÎïÏߵ͍Òå¿ÉµÃBF=BD=p+BFcos¦Á£¬
Ôò|BF|=
P
1-cos¦Á
£¬Í¬Àí¿ÉµÃ|AF|=
p
1+cos¦Á
£¬¹Ê£¨4£©¡¢£¨6£©²»ÕýÈ·£»
Ôò
1
|AF|
+
1
|BF|
=
1-cos¦Á
p
+
1+cos¦Á
p
=
2
p
£¬¹Ê£¨5£©¶Ô£»
£¨7£©ÓÉÓÚABµÄÖе㵽׼ÏߵľàÀëµÈÓÚACÓëBDµÄºÍµÄÒ»°ë£¬ÓÉÅ×ÎïÏߵ͍Ò壬¼´ÎªABµÄÒ»°ë£¬¹ÊÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßµÄ×¼ÏßÏàÇУ®¹Ê£¨7£©´í£®
¹Ê´ð°¸Îª£º£¨1£©£¨2£©£¨5£©£®
µãÆÀ£º±¾Ì⿼²éÅ×ÎïÏߵ͍Òå¡¢·½³ÌºÍÐÔÖÊ£¬¿¼²éÁªÁ¢Ö±Ïß·½³ÌºÍÅ×ÎïÏß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíÇó½â£¬¿¼²éÆ½Ãæ¼¸ºÎ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø