题目内容

某多面体的三视图如图所示,则其外接球的表面积为
 

考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图,可得该几何体是一个以俯视图为底面的三棱柱,求出棱柱的外接球的半径,代入球的表面积公式,可得答案.
解答: 解:由已知中的三视图,可得该几何体是一个以正视图为底面的三棱柱,
棱柱的底面外接圆半径r=
2
3
×
3
=
2
3
3

圆心到底面的距离d=
1
2
×h=1,
故棱柱的外接球半径R=
d2+r2
=
7
3

故棱柱的外接球的表面积S=4πR2=
28
3
π

故答案为:
28
3
π
点评:本题考查的知识点是由三视图求表面积,其中求出棱柱外接球的半径是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网