题目内容

14.已知函数f(x)=lnx-ax在x=2处的切线l与直线x+2y-3=0平行.记函数g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求实数a的值;
(2)令h(x)=g(x)+2x,若h(x)存在单调递减区间,求实数b的取值范围;
(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥$\frac{3}{2}$,且g(x1)-g(x2)≥k恒成立,求实数k的最大值.

分析 (1)求函数的导数,根据导数的几何意义建立方程关系即可求实数a的值;
(2)求出g(x)的导数,根据g′(x)<0在(0,+∞)上有解,结合二次函数的性质得到关于b的不等式组,解出即可;
(3)求函数的导数,根据函数极值之间的关系即可证明不等式.

解答 解:(1)f′(x)=$\frac{1}{x}$-a,
∵函数在x=2处的切线l与直线x+2y-3=0平行,
∴k=$\frac{1}{2}$-a=-$\frac{1}{2}$,
解得a=1;     
(2)∵g(x)=lnx+$\frac{1}{2}$x2-(b-1)x,
∴g′(x)=$\frac{{x}^{2}-(b-1)x+1}{x}$,
由题意得:g′(x)<0在(0,+∞)上有解,
∵x>0,设u(x)=x2-(b-1)x+1,则u(0)=1>0,
只需$\left\{\begin{array}{l}{\frac{b-1}{2}>0}\\{△{=(b-1)}^{2}-4>0}\end{array}\right.$,解得:b>3;
(3)∵g(x)=lnx+$\frac{1}{2}$x2-(b+1)x,
∴g′(x)=$\frac{1}{x}$+x-(b+1)=$\frac{{x}^{2}-(b+1)x+1}{x}$,
由g′(x)=0得x2-(b+1)x+1=0
∴x1+x2=b+1,x1x2=1,
∴x2=$\frac{1}{{x}_{1}}$,
∵b≥$\frac{3}{2}$,∴$\left\{\begin{array}{l}{{x}_{1}+\frac{1}{{x}_{1}}≥\frac{5}{2}}\\{0{<x}_{1}<\frac{1}{{x}_{1}}}\end{array}\right.$,解得:0<x1≤$\frac{1}{2}$,
∴g(x1)-g(x2)=ln$\frac{{x}_{1}}{{x}_{2}}$+$\frac{1}{2}$(x12-x22)-(b+1)(x1-x2)=2lnx1-$\frac{1}{2}$(x12-$\frac{1}{{{x}_{1}}^{2}}$),
设F(x)=2lnx-$\frac{1}{2}$(x2-$\frac{1}{{x}^{2}}$)(0<x≤$\frac{1}{2}$),
则F′(x)=$\frac{2}{x}$-x-$\frac{1}{{x}^{3}}$=$\frac{{-{(x}^{2}-1)}^{2}}{{x}^{3}}$<0
∴F(x)在(0,$\frac{1}{2}$]上单调递减; 
∴当x1=$\frac{1}{2}$时,F(x)min=F($\frac{1}{2}$)=$\frac{15}{8}$-2ln2,
∴k≤$\frac{15}{8}$-2ln2,
∴k的最大值为$\frac{15}{8}$-2ln2.

点评 本题主要考查导数的综合应用,求函数的导数,利用函数的极值,最值和导数之间是关系是解决本题的关键.综合性较强,运算量较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网