题目内容

15.已知f(x)=$\left\{\begin{array}{l}{(3-a)x,x∈(-∞,2]}\\{{a}^{x-1},x∈(2,+∞)}\end{array}\right.$是(-∞,+∞)上的增函数,那么实数a的取值范围是(  )
A.(1,3)B.(1,2)C.[2,3)D.(3,+∞)

分析 根据函数的解析式利用函数的单调性的性质可得$\left\{\begin{array}{l}{3-a>0}\\{a>1}\\{a≥2(3-a)}\end{array}\right.$,由此求得实数a的取值范围.

解答 解:∵f(x)=$\left\{\begin{array}{l}{(3-a)x,x∈(-∞,2]}\\{{a}^{x-1},x∈(2,+∞)}\end{array}\right.$ 是(-∞,+∞)上的增函数,∴$\left\{\begin{array}{l}{3-a>0}\\{a>1}\\{a≥2(3-a)}\end{array}\right.$,
即 $\left\{\begin{array}{l}{1<a<3}\\{3a≥6}\end{array}\right.$,求得2≤a<3,
故选:C.

点评 本题主要考查函数的单调性的性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网