题目内容
6.在微信群中抢红包已成为一种娱乐,已知某商业调查公司对此进行了问卷调查,其中男性500人,女性400人,为了了解喜欢抢红包是否与性别有关,现采用分层抽样的方法从中抽取了45人的调查结果,并作出频数统计表如下:表1:男性
| 等级 | 喜欢 | 一般 | 不喜欢 |
| 频数 | 15 | x | 5 |
| 等级 | 喜欢 | 一般 | 不喜欢 |
| 频数 | 15 | 3 | y |
| 男性 | 女性 | 总计 | |
| 喜欢 | 15 | 15 | 30 |
| 非喜欢 | 10 | 5 | 15 |
| 总计 | 25 | 20 | 45 |
临界值表:
| P(K2≥k0) | 0.10 | 0.05 | 0.01 |
| k0 | 2.706 | 3.841 | 6.635 |
分析 (Ⅰ)先由分层抽样求出x=5,y=2,得到2×2列联表,求出K2=1.125<2.706,从而得到没有90%的把握认为“喜欢抢红包与性别有关”.
(Ⅱ)先求出基本事件总数,再求出所选2人中至少有一人“不喜欢”的基本事件个数,由此能求出所选2人中至少有一人“不喜欢”的概率.
解答 解:(Ⅰ)设从男性中抽取了m人,则$\frac{m}{500}$=$\frac{45}{500+400}$,m=25,…(2分)
从而知从女性中抽取了20人,∴x=25-20=5,y=20-18=2.…(3分)
填写完整的2×2列联表如下:
| 男性 | 女性 | 总计 | |
| 喜欢 | 15 | 15 | 30 |
| 非喜欢 | 10 | 5 | 15 |
| 总计 | 25 | 20 | 45 |
∵1-0.9=0.1,P(K2≥2.706)=0.10,
∴没有90%的把握认为“喜欢抢红包与性别有关”.…(6分)
( II)由(Ⅰ)知表1中“一般”的有5人,分别记为A,B,C,D,E,表2中“不喜欢”的有2人,分别记为a,b,
则从中随机选取2人,不同的结果为:{A,B},{A,C},{A,D},{A,E},{A,a},{A,b},{B,C},{B,D},{B,E},{B,a},{B,b},{C,D},{C,E},{C,a},{C,b},{D,E},{D,a},{D,b},{E,a},{E,b},{a,b},共21种.…(9分)
设事件M表示“所选2人中至少有1人是‘不喜欢’”,则$\overline{M}$为“所选2人都是‘一般’”,事件M所包含的不同的结果为:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10种.…(11分)
∴P($\overline{M}$)=$\frac{10}{21}$,故P(M)=1-P($\overline{M}$)=1-$\frac{10}{21}$=$\frac{11}{21}$.…(12分)
点评 本题考查列联表的应用,考查概率的求法,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
17.在(a-b)20的二项展开式中,二项式系数与第7项系数相同的项是( )
| A. | 第15项 | B. | 第16项 | C. | 第17项 | D. | 第18项 |
1.下列说法正确的是( )
| A. | 任何两种变量都具有相关关系 | |
| B. | 某商品的生产量与该商品的销售价格之间是一种非确定性的关系 | |
| C. | 农作物的产量与施肥之间是一种确定性关系 | |
| D. | 球的体积与该球的半径具有相关关系 |