题目内容

1.已知数列{an}的首项a1=1,前n项和为Sn,且Sn+1-2Sn-n-1=0(n∈N*).
(Ⅰ) 求证:数列{an+1}为等比数列;
(Ⅱ) 令bn=nan,求数列{bn}的前n项和Tn

分析 (Ⅰ) 由Sn+1-2Sn-n-1=0,利用递推关系可得:an+1-2an-1=0,变形为an+1+1=2(an+1)(n≥2),即可证明.
(Ⅱ)由(Ⅰ)得${a_n}={2^n}-1$.可得${b_n}=n{a_n}=n×{2^n}-n$,利用“错位相减法”与等比数列的求和公式即可得出.

解答 (Ⅰ)证明:由Sn+1-2Sn-n-1=0,
当n≥2时,Sn-2Sn-1-n+1-1=0,
两式相减,得an+1-2an-1=0,可得an+1+1=2(an+1)(n≥2),
又(a1+a2)-2a1-1-1=0,则a2=3,满足a2+1=2(a1+1),
即{an+1}是一个首项为2,公比为2的等比数列.
(Ⅱ)解:由(Ⅰ)得${a_n}={2^n}-1$.
∴${b_n}=n{a_n}=n×{2^n}-n$,
则Tn=b1+b2+…+bn=1×21+2×22+…+n×2n-(1+2+…+n).
令${W_n}=1×{2^1}+2×{2^2}+…+n×{2^n}$,
则$2{W_n}=1×{2^2}+2×{2^3}+…+n×{2^{n+1}}$,
∴$-{W_n}=2+{2^2}+…+{2^n}-n×{2^{n+1}}=\frac{{2(1-{2^n})}}{1-2}-n×{2^{n+1}}=(1-n){2^{n+1}}-2$.
则${W_n}=(n-1){2^{n+1}}+2$.
∴${T_n}=(n-1){2^{n+1}}-\frac{n(n+1)}{2}+2$.

点评 本题考查了数列递推关系、“错位相减法”与等比数列的求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网