题目内容
16.有一智能机器人在平面上行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等,若机器人接触不到过点P(-1,0)且斜率为k的直线,求k的取值范围.分析 由抛物线的定义,求出机器人的轨迹方程,过点P(-1,0)且斜率为k的直线方程为y=k(x+1),代入y2=4x,利用判别式,即可求出k的取值范围.
解答 解:由题意可知机器人的轨迹为一抛物线,其轨迹方程为y2=4x,
过点P(-1,0)且斜率为k的直线方程为y=k(x+1),…(4分)
由题意知直线与抛物线无交点,即当直线位于图中阴影部分时,机器人是接触不到的;
联立消去y,得k2x2+(2k2-4)x+k2=0,则△=(2k2-4)2-4k4<0,…(8分)
所以k2>1,得k>1或k<-1.…(10分)
点评 本题考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.
练习册系列答案
相关题目
7.
如图所示,正方体ABCD-A1B1C1D1棱长为4,点H在棱DD1上,点I在棱CC1上,且HD=CI=1,在侧面BCC1B1内以C1为一个顶点作边长为1的正方形EFGC1,侧面BCC1B1内动点P满足到平面CDD1C1距离等于线段PF长的$\sqrt{2}$倍,则当点P运动时,三棱锥A-HPI的体积的最小值是( )
| A. | $\frac{2\sqrt{17}}{3}$ | B. | $\frac{25}{6}$ | C. | $\frac{2\sqrt{17}}{3}$(10-3$\sqrt{2}$) | D. | $\frac{20}{3}$-2$\sqrt{2}$ |
4.一个棱长为12的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体的体积最大值是( )
| A. | 16$\sqrt{2}$ | B. | 6$\sqrt{2}$ | C. | 12$\sqrt{2}$ | D. | 32$\sqrt{2}$ |
11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆C于A,B两点,若|AF|+|BF|=4,点M到直线l的距离等于$\frac{4}{5}$,则椭圆C的离心率为( )
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{6}}{4}$ |
1.已知一正三棱台上底边长为3,下底边长为6,高为3,则此三棱台体积为( )
| A. | $\frac{{63\sqrt{3}}}{4}$ | B. | $\frac{{21\sqrt{3}}}{4}$ | C. | $\frac{{45\sqrt{3}}}{4}$ | D. | $\frac{{15\sqrt{3}}}{4}$ |