题目内容

11.函数f(x)=Acos(wx+φ)(A>0,W>0)的部分图象如图所示,则f(1)+f(2)+…+f(2017)值为(  )
A.0B.2-$\sqrt{2}$C.1D.$\sqrt{2}$

分析 根据图象求出函数的解析式,结合三角函数的性质即可得到结论.

解答 解:由图象可得:A=2,周期T=8,
∴$\frac{2π}{8}=ω$,即ω=$\frac{π}{4}$.
图象过点(2,2),
即2=2cos($\frac{π}{4}×2+$φ)=-2sinφ
得:φ=-$\frac{π}{2}$+2kπ.
则f(x)=2cos($\frac{π}{4}x-\frac{π}{2}$)=2sin$\frac{π}{4}x$.
∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)=0.
那么:f(1)+f(2)+…+f(2017)=f(1)=2sin$\frac{π}{4}$=$\sqrt{2}$.
故选:D.

点评 本题考查了图象求出三角函数的解析式,和周期函数的计算.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网