题目内容
已知双曲线的左右焦点分别为,O为坐标原点,P为双曲线右支上一点,的内切圆的圆心为Q,过作PQ的垂线,垂足为B,则OB的长度为( )
A. B.4 C.3 D.2
抛物线的焦点坐标是 .
已知数列{an}的前n项的和为Sn,记bn=.
(1)若{an}是首项为a,公差为d的等差数列,其中a,d均为正数.
①当3b1,2b2,b3成等差数列时,求的值;
②求证:存在唯一的正整数n,使得an+1≤bn<an+2.
(2)设数列{an}是公比为q(q>2)的等比数列,若存在r,t(r,t∈N*,r<t)使得求q的值.
甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:
则甲、乙两位选手中成绩最稳定的选手的方差是 .
在平面直角坐标系 中,点到两点M、N的距离之和等于4.设点 的轨迹为C.
(1) 写出轨迹C的方程;
(2) 设直线y=x+1 与C交于 、两点, 求|AB|的长。
已知双曲线的一条渐近线平行于直线,双曲线的一个焦点在直线上,则双曲线方程为( )
A. B. C. D.
已知,,点满足,记点的轨迹为.
(1)求轨迹的方程;
(2)若直线过点且与轨迹交于、两点.
(i)无论直线绕点怎样转动,在轴上总存在定点,使恒成立,求实数的值.
(ii)在(i)的条件下,求面积的最小值.
已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为( )
为了测量灯塔的高度,第一次在点处测得,然后向前走了20米到达点处测得,点在同一直线上,则灯塔的高度为 .