题目内容
18.(Ⅰ)若圆x2+y2=4在伸缩变换$\left\{\begin{array}{l}{x′=λx}\\{y′=3y}\end{array}\right.$(λ>0)的作用下变成一个焦点在x轴上,且离心率为$\frac{4}{5}$的椭圆,求λ的值;(Ⅱ)在极坐标系中,已知点A(2,0),点P在曲线C:$ρ=\frac{2+2cosθ}{si{n}^{2}θ}$上运动,求P、A两点间的距离的最小值.
分析 (Ⅰ)圆x2+y2=4在伸缩变换$\left\{\begin{array}{l}{x′=λx}\\{y′=3y}\end{array}\right.$(λ>0)的作用下可得:$\frac{({x}^{′})^{2}}{{λ}^{2}}$+$\frac{({y}^{′})^{2}}{9}$=4,即$\frac{{x}^{2}}{4{λ}^{2}}$+$\frac{{y}^{2}}{36}$=1.根据变成一个焦点在x轴上,且离心率为$\frac{4}{5}$的椭圆,可得b=6,$\sqrt{1-\frac{36}{4{λ}^{2}}}$=$\frac{4}{5}$,解得λ.
(Ⅱ)曲线C的极坐标方程曲线C:$ρ=\frac{2+2cosθ}{si{n}^{2}θ}$=$\frac{2}{1-cosθ}$,即ρ-ρcosθ=2.利用互化公式可得直角坐标方程,设点P(x,y)(x≥-1),利用两点之间的距离公式、二次函数的单调性即可得出.
解答 解:(Ⅰ)圆x2+y2=4在伸缩变换$\left\{\begin{array}{l}{x′=λx}\\{y′=3y}\end{array}\right.$(λ>0)的作用下可得:$\frac{({x}^{′})^{2}}{{λ}^{2}}$+$\frac{({y}^{′})^{2}}{9}$=4,即$\frac{{x}^{2}}{4{λ}^{2}}$+$\frac{{y}^{2}}{36}$=1.
变成一个焦点在x轴上,且离心率为$\frac{4}{5}$的椭圆,∴2λ=a,b=6,$\sqrt{1-\frac{36}{4{λ}^{2}}}$=$\frac{4}{5}$,解得λ=5.
(Ⅱ)曲线C的极坐标方程曲线C:$ρ=\frac{2+2cosθ}{si{n}^{2}θ}$=$\frac{2}{1-cosθ}$,即ρ-ρcosθ=2.化为直角坐标方程,得$\sqrt{{x}^{2}+{y}^{2}}$-x=2.
化为:y2=4(x+1).设点P(x,y)(x≥-1),
则|PA|=$\sqrt{(x-2)^{2}+{y}^{2}}$=$\sqrt{{x}^{2}+8}$≥2$\sqrt{2}$,当且仅当x=0时取等号.
故|PA|的最小值为2$\sqrt{2}$.
点评 本题考查了椭圆的标准方程与性质、坐标变换、极坐标方程化为直角坐标方程、两点之间的距离公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
| A. | 2 | B. | $2\sqrt{2}$ | C. | -2 | D. | $-2\sqrt{2}$ |
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
| A. | $\overline{M}$∪$\overline{N}$是必然事件 | B. | M∪N是必然事件 | ||
| C. | $\overline{M}$∩$\overline{N}$=∅ | D. | $\overline{M}$与$\overline{N}$一定不为互斥事件 |
| x(万元) | 2 | 4 | 5 | 6 | 8 |
| y(万元) | 30 | 40 | 60 | 50 | 70 |
(2)据此估计广告费用为11万元时销售额的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)