题目内容

设偶函数f(x)=loga|x+b|在(0,+∞)上是单调减函数,则f(b-2)与f(a+1)的大小关系是(  )
A、f(b-2)=f(a+1)
B、f(b-2)>f(a+1)
C、f(b-2)<f(a+1)
D、不能确定
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:由已知中函数f(x)=loga|x+b|(a>0且a≠1)是偶函数,我们可以确定出b的值,再由函数f(x)在(0,+∞)上单调递减,结合对数函数的单调性及复数函数的单调性,我们可以求出a的取值范围,及函数在区间(-∞,0)上的单调性,进而判断出f(a+1)与f(b-2)的大小.
解答: 解:∵函数f(x)=loga|x+b|(a>0且a≠1)是偶函数,
故f(-x)=loga|-x+b|=f(x)=loga|x+b|,
即|-x+b|=|x+b|,
解得b=0,
又∵函数f(x)在(0,+∞)上单调递减,
故0<a<1,
且函数f(x)在(-∞,0)上单调递增,
∵1<a+1<2=-(b-2),
故f(a+1)>f[-(b-2)]=f(b-2),
故f(b-2)<f(a+1),
故选:C
点评:本题考查的知识点是函数奇偶性的性质,函数单调性的应用,其中根据已知条件确定出参数a,b的值(或范围),并判断出函数在区间(-∞,0)上的单调性,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网