题目内容

13.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:
不关注关注总计
男生301545
女生451055
总计7525100
根据表中数据,通过计算统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并参考一下临界数据:
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
  k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83
若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过(  )
A.0.10B.0.05C.0.025D.0.01

分析 根据表中数据计算统计量K2,参考临界数据,即可得出结论.

解答 解:根据表中数据,计算统计量
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{100{×(30×10-45×15)}^{2}}{75×25×45×55}$≈3.03>2.706,
参考临界数据知,认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,
此结论出错的概率不超过0.10.
故选:A.

点评 本题考查了独立性检验的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网