题目内容

19.已知α∈(0,$\frac{π}{2}$),若cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,则sin(α-$\frac{π}{12}$)=$\frac{\sqrt{2}}{10}$.

分析 由已知利用诱导公式可求sin(α-$\frac{π}{3}$),利用同角三角函数基本关系式可求cos(α-$\frac{π}{3}$)的值,进而利用两角和的正弦函数公式即可计算得解sin(α-$\frac{π}{12}$)的值.

解答 解:∵α∈(0,$\frac{π}{2}$),
∴-$\frac{π}{3}$<α-$\frac{π}{3}$<$\frac{π}{6}$,
∵cos(α+$\frac{π}{6}$)=sin($\frac{π}{3}$-α)=$\frac{3}{5}$,
∴sin(α-$\frac{π}{3}$)=-$\frac{3}{5}$,
∴cos(α-$\frac{π}{3}$)=$\sqrt{1-si{n}^{2}(α-\frac{π}{3})}$=$\frac{4}{5}$,
∴sin(α-$\frac{π}{12}$)=sin[(α-$\frac{π}{3}$)+$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$[sin(α-$\frac{π}{3}$)+cos(α-$\frac{π}{3}$)]=$\frac{\sqrt{2}}{2}$×(-$\frac{3}{5}$+$\frac{4}{5}$)=$\frac{\sqrt{2}}{10}$.
故答案为:$\frac{\sqrt{2}}{10}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网